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1 Introduction

RAVEN is a software framework able to perform parametric and stochastic analysis based on the
response of complex system codes. The initial development was aimed at providing dynamic risk
analysis capabilities to the thermohydraulic code RELAP-7, currently under development at Idaho
National Laboratory (INL). Although the initial goal has been fully accomplished, RAVEN is now
a multi-purpose stochastic and uncertainty quantification platform, capable of communicating with
any system code.

In fact, the provided Application Programming Interfaces (APIs) allow RAVEN to interact with
any code as long as all the parameters that need to be perturbed are accessible by input files or via
python interfaces. RAVEN is capable of investigating system response and explore input space us-
ing various sampling schemes such as Monte Carlo, grid, or Latin hypercube. However, RAVEN
strength lies in its system feature discovery capabilities such as: constructing limit surfaces, sepa-
rating regions of the input space leading to system failure, and using dynamic supervised learning
techniques.

The development of RAVEN started in 2012 when, within the Nuclear Energy Advanced Mod-
eling and Simulation (NEAMS) program, the need to provide a modern risk evaluation framework
arose. RAVEN’s principal assignment is to provide the necessary software and algorithms in order
to employ the concepts developed by the Risk Informed Safety Margin Characterization (RISMC)
program. RISMC is one of the pathways defined within the Light Water Reactor Sustainability
(LWRS) program.

In the RISMC approach, the goal is not just to identify the frequency of an event potentially
leading to a system failure, but the proximity (or lack thereof) to key safety-related events. Hence,
the approach is interested in identifying and increasing the safety margins related to those events.
A safety margin is a numerical value quantifying the probability that a safety metric (e.g. peak
pressure in a pipe) is exceeded under certain conditions.

Most of the capabilities, implemented having RELAP-7 as a principal focus, are easily de-
ployable to other system codes. For this reason, several side activates have been employed (e.g.
RELAP5-3D, any MOOSE-based App, etc.) or are currently ongoing for coupling RAVEN with
several different software. The aim of this document is to detail the input requirements for RAVEN
focusing on the input structure.
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2 Manual Formats

In order to highlight some parts of the Manual having a particular meaning (e.g. input structure,
examples, terminal commands, etc.), specific formats have been used. In this sections all the
formats with a specific meaning are reported:

• Python Coding:

class AClass():
def aMethodImplementation(self):

pass

• XML input example:

<MainXMLBlock>
...
<anXMLnode name='anObjectName' anAttribute='aValue'>

<aSubNode>body</aSubNode>
</anXMLnode>
...

</MainXMLBlock>

• Bash Commands:

cd trunk/raven/
./raven_libs_script.sh
cd ../../
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3 Installation

3.1 Overview

The installation of the RAVEN code is a straightforward procedure; depending on the usage pur-
pose and machine architecture, the installation process slightly differs.

In the following sections, the recommended installation procedure is outlined. For alternatives,
we encourage checking the RAVEN wiki. The machines on which RAVEN is tested and developed,
however, use the standard installation procedures outlined below.

The installation process will involve three steps:

• Installing prerequisites, which depends on your operating system;

• Installing conda;

• Installing RAVEN.

Depending on your operating system (Windows in section 3.4, MacOSX in section 3.3, Ubuntu
Linux in section 3.2), follow the instructions for installing prerequisites, then continue with in-
stalling conda (section 3.5), and then installing RAVEN (section 3.6).

3.2 Linux Ubuntu Installation

The following instructions are for installing RAVEN on a Linux machine running Ubuntu 16.04
or greater. Some explanations of alternatives for other Linux distributions may be provided on the
RAVEN wiki.

To install the prerequisite packages, the following terminal command should be executed (note
this requires administrative privileges):

sudo apt-get install libtool git python3-dev swig g++

3.2.0.1 Optional LateX installation

Optionally, if you want to be able to edit and rebuild the manuals, you can install TEX Live and its
related packages:
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sudo apt-get install texlive-latex-base \
texlive-extra-utils texlive-latex-extra texlive-math-extra

Once the above are installed, proceed with installing conda (see section 3.5).

3.3 Mac OSX Installation

When using an Apple Macintosh computer, software dependencies are met by following steps:

• Install the XCode command line tools from Apple,

• Install the XQuartz X-Window system server,

3.3.1 Installing XCode Command Line Tools

The XCode command line tools package from Apple Computer provides the C++ compilers and
git source code control tools needed to obtain and build RAVEN. It is freely available from the
Apple store. In order to obtain it the following command should be launched in an open terminal:

xcode-select --install

3.3.2 Installing XQuartz

XQuartz is an implementation of the X Server for the Mac OSX operating system. XQuartz is
freely available on the web and can be downloaded from the link https://dl.bintray.
com/xquartz/downloads/XQuartz-2.7.9.dmg.
After downloaded, install the package.

With XCode and XQuartz installed, continue on to install conda (see section 3.5).

Note: While gcc and git are also required, they are installed by default in the OSX system.

3.4 Microsoft Windows

The process of establishing the required environment for Windows is notably more involved than
the other two systems; however, it is straightforward. First, RAVEN has the following prerequisites
on Windows:
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• A system running a 64-bit version of Microsoft Windows. Installation and operation has
been verified on Windows 7, 10, and Windows Server 2012 R2 Standard.

• At least 9 Gigabytes of available disk space:

– 0.5 GB for GIT SCM, including supporting tools and git source code control

– 1.5 GB for Python language and supporting packages

– 1 GB for RAVEN framework

– 5.0 GB for the Visual Studio compiler needed to build RAVEN

3.4.1 A Visual Guide

Note: An illustrated version of this procedure may be found on the RAVEN wiki.

3.4.2 GIT SCM for Windows

RAVEN currently works on Windows using basic tools freely available online. The first software
to be downloaded and installed is Git SCM available at https://gitforwindows.org/.

1. Obtain the latest Git SCM for Windows installer from https://gitforwindows.
org/ and install it. Install Git Bash and have the installer add Git Bash to your Windows
PATH environment variables. The PATH can be updated either automatically (allowing the
Git SCM installer to update it for you) or manually (Systems Properties - Environment Vari-
ables - Edit Environment Variables).

3.4.3 Install Python Language and Package Support

1. Download the latest 64-bit installer for Windows Python 3 from https://conda.io/
miniconda.html and install it.

2. The installer will ask whether Python should be installed for only the logged in user or for
all users. Either option will work for RAVEN.

3. have the installer add conda to your Windows PATH environment variables. The PATH
can be updated either automatically (allowing the conda installer to update it for you) or
manually (Systems Properties - Environment Variables - Edit Environment Variables).

4. Check the installation of Python and coda locating and testing the Python installation. Open
a Windows command prompt and enter the command ”where python”, which attempts to
locate a the Python language interpreter in the current system path. This looks like:
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C:\ Users \USERID> where py thon
C:\ Users \USERID\AppData\Loca l \Continuum\Miniconda3 \ py thon . exe

3.4.4 Compiler Installation and Configuration

1. Download and install Visual Studio. A C++ language compiler that supports C++11 features
is needed to perform this step. Microsoft’s Visual Studio Community Edition is free and
available from https://www.visualstudio.com/downloads/.

The current version (as of this writing) is 2017. The 2015 and 2017 versions have been
successfully used to build RAVEN. Professional and Enterprise versions of these will also
work. If one of these is already present on your system, it is not necessary to obtain another
one. Note that because C++11 language features are required, the ”Microsoft Visual C++
Compiler for Python 2.7 or 3.x” often used for building Python add-ons will not work.

After downloading and running the Visual Studio installer, it will ask what features to in-
stall. For building RAVEN, ”Desktop development with C++” is needed at a minimum.
Installation of other Visual Studio features should be fine.

Once the compiler installation and configuration is complete, you are prepared to install the
RAVEN libraries (see section 3.5).

3.5 Conda: Python Dependencies

The standard installation procedure for RAVEN includes using Miniconda (often simply referred to
as conda) to install the Python libraries required to run RAVEN. If conda cannot be made available
on an operating system, refer to the wiki (listed above) for alternatives. To install miniconda, follow
the instructions for your operating system at https://conda.io/miniconda.html.

Note: RAVEN currently works with Python 2.7, but it is recommended that Python 3 be used,
so unless you have a reason to use 2.7, we recommend installing the 64 bit Python 3 version of
miniconda.

Once conda is installed, proceed to installing RAVEN itself (section 3.6).

3.6 Installing RAVEN

Once the RAVEN dependencies have been installed and conda is present (see section 3.1), the rest
of RAVEN can be installed.
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The installation of RAVEN involves the following steps:

• Obtain the source code,

• Install the prerequisite Python libraries using conda,

• Compile

3.6.1 Obtaining RAVEN Source Code

RAVEN is hosted publicly as a Git repo on GitHub and can be viewed at https://github.
com/idaholab/raven/wiki. In the event that access to GitHub is impossible, contact the
user list and other arrangements may be possible. In general, however, using the git repository
assures the most consistent usage and update process.

To clone RAVEN, navigate in a terminal to the desired destination, for example /projects.
Then run the commands

git clone https://github.com/idaholab/raven.git
cd raven
git submodule update --init

This will obtain RAVEN as well as other submodules that RAVEN uses. In the future, whenever
we declare a path starting with raven/, we refer to the cloned directory.

3.6.2 Installing Python Libraries

RAVEN depends heavily on Python, and uses conda to maintain a separate environment to prevent
conflicts with other Python library installations. This separate environment is called raven libraries.

In order to establish this environment, navigate to raven, then

• Any unix-based systems (e.g. Macintosh, Linux, etc.):

cd scripts
./establish_conda_env.sh --install

• Windows:

cd scripts
bash.exe establish_conda_env.sh --install
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Assure that there are no errors in this process, then continue to compiling RAVEN.

Note: If conda is not installed in the default location, then the path to the conda definitions
needs to be provided, for example

• Any unix-based systems (e.g. Macintosh, Linux, etc.):

cd scripts
./establish_conda_env.sh --install

--conda-defs /path/to/miniconda3/etc/profile.d/conda.sh

• Windows:

cd scripts
bash.exe establish_conda_env.sh --install

--conda-defs \path/\to\miniconda3\etc\profile.d\conda.sh

replacing /path/to with the install path for conda.

3.6.3 Compiling RAVEN

Once Python libraries are established and the source code present, navigate to raven and run

• Any unix-based systems (e.g. Macintosh, Linux, etc.):

./build_raven

• Windows:

bash.exe build_raven

This will compile several dependent libraries. This step has the highest potential for revealing
problems in the operating system setup, particularly for Windows. See troubleshooting on the
RAVEN wikifor help sorting out difficulties.

3.6.4 Testing RAVEN

To test the installation of RAVEN, navigate to raven, then run the command
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• Any unix-based systems (e.g. Macintosh, Linux, etc.):
../run_tests -j2

• Windows:

bash.exe ./run_tests -j2

where -j2 signifies running with 2 processors. If more processors are available, this can
be increased, but using all or more than all of the available processes can slow down the testing
dramatically. This command runs RAVEN’s regression tests, analytic tests, and unit tests. The
number of tests changes frequently as the code’s needs change, and the time taken to run the tests
depends strongly on the number of processors and processor speed.

At the end of the tests, a number passed, skipped, and failing will be reported. Having some
skipped tests is expected; RAVEN has many tests that apply only to particular configurations or
codes that are not present on all machines. However, no tests should fail; if there are problems,
consult the troubleshooting section on the RAVEN wiki.

3.6.5 Updating RAVEN

RAVEN updates frequently, and new features are added while bugs are fixed on a regular basis. To
update RAVEN, navigate to raven, then run the commands

• Any unix-based systems (e.g. Macintosh, Linux, etc.):
git pull
./scripts/establish_conda_env.sh --install
./build_raven

• Windows:

git pull
bash.exe scripts/establish_conda_env.sh --install
bash.exe build_raven

3.6.6 In-use Testing

Whenever RAVEN is installed on a new computer or whenever there is a significant change to the
operating system, in-use tests shall be conducted. Acceptable performance of RAVEN shall be
confirmed by running the installation tests as described in 3.6.4.
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4 Running RAVEN

The RAVEN code is a blend of C++, C, and Python software. The entry point resides on the Python
side and is accessible via a command line interface. After following the instructions in the previous
Section, RAVEN is ready to be used. The raven framework script is in the raven folder. To
run RAVEN, open a terminal and use the following command (replace <inputFileName.xml>
with your RAVEN input file):

• Any unix-based systems (e.g. Macintosh, Linux, etc.):

raven_framework <inputFileName.xml>

• Windows:

bash.exe raven_framework <inputFileName.xml>

Using raven framework is the recommended way to run RAVEN. In the event bypassing
the typical environment loading and checks is desired, it can also be run via the Driver.py script
using python, with the input file as argument. However, this is not recommended, as it will use
whatever default versions of Python and other libraries are discovered, rather than the matching
libraries set up during installation.

Note: For Windows systems, we provided a convienient Batch script ( raven framework.bat
) for running RAVEN avoiding to interact with the Windows command line terminal. More info
on how to use it can be found in the RAVEN RAVEN wiki, section Running RAVEN (https:
//github.com/idaholab/raven/wiki/runningRAVEN).
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5 Raven Input Structure

The RAVEN code does not have a fixed calculation flow, since all of its basic objects can be
combined in order to create a user-defined calculation flow. Thus, its input (XML format) is
organized in different XML blocks, each with a different functionality. The main input blocks are
as follows:

• <Simulation>: The root node containing the entire input, all of the following blocks fit
inside the Simulation block.

• <RunInfo>: Specifies the calculation settings (number of parallel simulations, etc.).

• <Files>: Specifies the files to be used in the calculation.

• <Distributions>: Defines distributions needed for describing parameters, etc.

• <Samplers>: Sets up the strategies used for exploring an uncertain domain.

• <Optimizers>: Sets up the strategies used for minimizing/maximizing an objective func-
tion.

• <DataObjects>: Specifies internal data objects used by RAVEN.

• <Databases>: Lists the HDF5 databases used as input/output to a RAVEN run.

• <OutStreams>: Visualization and Printing system block.

• <Models>: Specifies codes, ROMs, post-processing analysis, etc.

• <Functions>: Details interfaces to external user-defined functions and modules. the user
will be building and/or running.

• <Steps>: Combines other blocks to detail a step in the RAVEN workflow including I/O
and computations to be performed.

Each of these blocks are explained in dedicated sections in the following chapters.

5.1 Comments

Comments may be included in the RAVEN input using standard XML comments, using <!-- and
--> as shown in the example below.
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<Simulation>
...
<!-- An Example Comment -->
<Samplers>
...

Comments may be placed anywhere except before the <Simulation> node or after the </Simulation>
node. Comments outside the root node will cause errors in maintaining input file compatability.
Additionally, comments must completely surround any nodes they comment out. Comments are
intended to completely remove blocks of code, or to add readability. For instance, the following is
INCORRECT usage:

<!--<Assembler> -->
<!--</Assembler> -->

and the following is compatible usage for a code block:

<!--<Samplers>
<Monte Carlo name='mc'>

...
</Monte Carlo>
...

</Samplers> -->

5.2 Verbosity

Each block within RAVEN also makes use of a verbosity system, which allows a user to control
the level of output to the user interface. These settings are declared globally as attributes in the
<Simulation> node, and locally in each block. The verbosity levels are

• ’silent’ - Only simulation-breaking errors are displayed.

• ’quiet’ - Errors as well as warnings are displayed.

• ’all’ (default) - Errors, warnings, and messages are displayed.

• ’debug’ - For developers. All errors, warnings, messages, and debug messages are dis-
played.

Examples of verbosity usage are included in many examples throughout this manual.

At the <Simulation> node, the following global variables can be set:
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• verbosity, optional string, determines the global verbosity level. Defaults to ’all’.

• printTimeStamps, optional boolean, determines whether time stamps will be added to
printed messages. Defaults to true.

• color, optional boolean, determines whether ANSI color tags will be used in printed mes-
sages. Defaults to false.

• profile, optional comma-separated list, enables time profiling of parts of RAVEN. Op-
tions include ’jobs’. Default is no profiling.

5.3 External Input Files

The <ExternalXML> node defines external input file (XML format) that can be used to replace
any XML nodes under <Simulation> in the RAVEN input file. This node allows a user to load
any external input file that contains the required XML nodes into the RAVEN input file. Each
<ExternalXML> node has the following attributes:

• node, required string attribute, user-defined XML node of RAVEN input file.

• xmlToLoad, required string attribute, file name with its absolute or relative path. Note: if
a relative path is specified, it must be relative with respect to the RAVEN input file.

For example, if the file Models.xml contain the required RAVEN input XML node <Models>,
the RAVEN input file might appear as:

<Simulation>
...
<Steps>

...
</Steps>
...
<ExternalXML node='Models'

xmlToLoad='external_input/Models.xml'/>
...

</Simulation>

Another example, if the file MultiRun.xml contain the required RAVEN input XML node
<MultiRun> under node <Steps>, the RAVEN input file might appear as:

<Simulation>
...
<Steps>
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...
<ExternalXML node='MultiRun'

xmlToLoad='external_input/MultiRun.xml'/>
...

</Steps>
...

</Simulation>
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6 RunInfo

In the RunInfo block, the user specifies how the overall computation should be run. This block
accepts several input settings that define how to drive the calculation and set up, when needed,
particular settings for the machine the code needs to run on (e.g. queueing system, if not PBS,
etc.). In the following subsections, we explain all the keywords and how to use them in detail.

6.1 RunInfo: Input of Calculation Flow

This sub-section contains the information regarding the XML nodes used to define the settings of
the calculation flow that is being performed through RAVEN:

• <WorkingDir>, string, required field, specifies the absolute or relative (with respect to
the location where the xml file is located) path to a directory that will store all the results of
the calculations and where RAVEN looks for the files specified in the block <Files>. If
runRelative=’True’ is used as an attribute, then it will be relative to where raven is
run.
Default: None

• <RemoteRunCommand>, string, optional field, specifies the absolute or relative (with re-
spect to the framework directory) path to a command that can be used on a remote machine to
execute a command. The command is passed in as the environmental variable COMMAND.

Default: raven qsub command.sh

• <NodeParameter>, string, optional field, specifies the flag used to specify a node file for
the MPIExec command. This will be followed by a file with the nodes that a single batch
will run on.
Default: -f

• <MPIExec>, string, optional field, specifies the command used to run mpi. This will be
followed by the <NodeParameter> and then the node file and then the code command.
Default: mpiexec

• <batchSize>, integer, optional field, specifies the number of parallel runs executed si-
multaneously (e.g., the number of driven code instances, e.g. RELAP5-3D, that RAVEN
will spawn at the same time). Each parallel run will use NumThreads ∗ NumMPI cores.
Default: 1

• <maxQueueSize>, integer, optional field, specifies the number of parallel runs that can
be staged for running simultaneously. The RAVEN architecture is inherently multithreaded
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where a job queue is continuously monitored by a job handling thread. New jobs are added
to this queue as they become available from the main thread of execution. Since the main
thread is also responsible for collecting the results of previously finished jobs, it is pos-
sible that faster jobs may complete before the main thread can replenish the queue. By
increasing this value, you are allowing RAVEN to consume more memory in order to stage
more jobs, placing them in a pending job queue, with the benefit that slower job collection
times will be masked as the job handler will flush the complete jobs and run whatever is
available on the pending queue. With smaller values, RAVEN will consume less memory
staging jobs, but there is potential that the job processing thread may be starved of jobs
and waste parallel cycles as the code degrades to serially waiting for the main thread to
complete collecting finished jobs. Where <batchSize> represents the number of jobs
running, <maxQueueSize> represents the total number of jobs running plus the queued
jobs. Values of <maxQueueSize> less than <batchSize> will be ignored. By default,
<maxQueueSize> will be equal to <batchSize>.

• <Sequence>, comma separated string, required field, is an ordered list of the step names
that RAVEN will run (see Section 18).

• <JobName>, string, optional field, specifies the name to use for the job when submitting
to a pbs queue. Acceptable characters include alphanumerics as well as “-” and “ ”. If more
than 15 characters are provided, RAVEN will truncate it using a hyphen between the first 10
and last 4 character, i.e., “1234567890abcdefgh” will be truncated to “1234567890-efgh”.
Default: raven qsub

• <printInput>, string, optional field, if provided, indicates RAVEN should print out
a duplicate of the input file. If the provided text is ’false’, or the node is not pro-
vided, then no duplicate will be printed. If the node is provided but no name specified,
it will use the default name. Otherwise, the file will be written in the working directory as
name provided.xml.
Default: duplicated input.xml

• <NumThreads>, integer, optional field, can be used to specify the number of threads
RAVEN should associate when running the driven software. For example, if RAVEN is
driving a code named “FOO,” and this code has multi-threading support, this block is used to
specify how many threads each instance of FOO should use (e.g. “FOO --n-threads=N”
where N is the number of threads).
Default: 1 (or None when the driven code does not have multi-threading support)

• <NumMPI>, integer, optional field, can be used to specify the number of MPI CPUs RAVEN
should associate when running the driven software. For example, if RAVEN is driving a code
named “FOO,” and this code has MPI support, this block specifies how many MPI CPUs
each instance of FOO should use (e.g. “mpiexec FOO -np N” where N is the number of
CPUs).
Default: 1 (or None when the driven code does not have MPI support)
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• <totalNumCoresUsed>, integer, optional field, is the global number of CPUs RAVEN
is going to use for performing the calculation. When the driven code has MPI and/or
multi-threading support and the user specifies NumThreads > 1 and NumMPI > 1, then
totalNumCoresUsed is set according to the following formula:
totalNumCoresUsed = NumThreads ∗ NumMPI ∗ batchSize.
Default: 1

• <internalParallel>, boolean, optional field, is a boolean flag that controls the type of
parallel implementation needs to be used for Internal Objects (e.g. ROMs, External Models,
PostProcessors, etc.). If this flag is set to:

– False, the internal parallelism is employed using multi-threading (i.e. 1 processor,
multiple threads equal to the <batchSize>).
Note: This “parallelism mode” runs multiple instances of the Model in a single pro-

cessor. If the evaluation of the model is memory intensive (i.e. it uses a lot of mem-
ory) or computational intensive (i.e. a lot of computation operations evolving in a
CPUt ≈> 0.1 sec

evaluation
) the single processor might get over-loaded determining a

degradation of performance. In such cases, the internal parallelism needs to be used
(see the following);

– True, the internal parallelism is employed using a internally-developed multi-processor
approach (i.e. <batchSize> processors, 1 single thread). This approach works for
both Shared Memory Systems (e.g. PC, laptops, workstations, etc.) and Distributed
Memory Machines (e.g. High Performance Computing Systems, etc.).
Note: This “parallelism mode” runs multiple instances of the Model in multiple pro-

cessors. Since the parallelism is employed in Python, some overhead is present. This
“mode” needs to be used when:

* the Model evaluation is memory intensive (i.e. the multi-threading approach will
cause the over-load of a single processor);

* the Model evaluation is computation intensive (i.e. CPUt ≈> 0.1 sec
evaluation

).

Default: False

• <precommand>, string, optional field, specifies a command that needs to be inserted
before the actual command that is used to run the external model (e.g., mpiexec -n 8
precommand ./externalModel.exe (...)). Note that the precommand as well
as the postcommand are ONLY applied to execution commands flagged as “parallel” within
the code interface.
Default: None

• <postcommand>, string, optional field, specifies a command that needs to be appended
after the actual command that is used to run the external model (e.g., mpiexec -n 8
./externalModel.exe (...) postcommand). Note that the postcommand as
well as the precommand are ONLY applied to execution commands flagged as “parallel”
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within the code interface.
Default: None

• <clusterParameters>, string, optional field, specifies extra parameters to be used
with the cluster submission command. For example, if qsub is used to submit a command,
then these parameters will be used as extra parameters with the qsub command. This can
be repeated multiple times as needed and they will all be passed to the cluster submission
command.
Default: None

• <MaxLogFileSize>, integer, optional field. specifies the maximum size of the log file
in bytes. Every time RAVEN drives a code/software, it creates a logfile of the code’s screen
output.
Default: ∞
( Note: This flag is not implemtend yet.)

• <deleteOutExtension>, comma separated string, optional field, specifies, if a run
of an external model has not failed, which output files should be deleted by their extension
(e.g., <deleteOutExtension>txt,pdf</deleteOutExtension> will delete all
generated txt and pdf files). Note: This flag is only active for Models of type “Code”.
Default: None

• <delSucLogFiles>, boolean, optional field, when True and the run of an external model
has not failed (return code = 0), deletes the associated log files. Note: This flag is only active
for Models of type “Code”.
Default: False

6.2 RunInfo: Input of Queue Modes

In this sub-section, all of the keywords (XML nodes) for setting the queue system are reported.

• <mode>, string, optional field, can specify which kind of protocol the parallel enviroment
should use. RAVEN currently supports one pre-defined “mode”:

– mpi: this “mode” uses <MPIExec> command (default: mpiexec) to distribute the
running program; more information regarding this protocol can be found in [1]. Mode
“MPI” can either generate a qsub command or can execute on selected nodes. In
order to make the “mpi” mode generate a qsub command, an additional keyword (xml
sub-node) needs to be specified:

* If RAVEN is executed in the HEAD node of an HPC system using [2], the user
needs to input a sub-node, <runQSUB>, right after the specification of the mpi
mode (i.e.
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<mode>mpi<runQSUB/></mode>). If the keyword is provided, RAVEN gen-
erates a qsub command, instantiates itself, and submits itself to the queue system.

* If the user decides to execute RAVEN from an “interactive node” (a certain num-
ber of nodes that have been reserved in interactive PBS mode), RAVEN, using
the “mpi” system, is going to utilize the reserved resources (CPUs and nodes) to
distribute the jobs, but, will not generate a qsub command.

When the user decides to run in “mpi” mode without making RAVEN generate a qsub
command, different options are available:

* If the user decides to run on the local machine (either in local desktop/workstation
or a remote machine), no additional keywords are needed (i.e.
<mode>mpi</mode>).

* If the user is running on multiple nodes, the node ids have to be specified:
· the node ids can be specified in an external text file (node ids separated by

blank space). This file needs to be provided in the XML node <mode>, intro-
ducing a sub-node named <nodefile> (e.g.
<mode>mpi<nodefile>/tmp/nodes</nodefile></mode>).

· the node ids can be contained in an enviromental variable (node ids separated
by blank space). This variable needs to be provided in the <mode> XML
node, introducing a sub-node named <nodefileenv> (e.g.
<mode>mpi<nodefileenv>NODEFILE</nodefileenv></mode>>).

· If none of the above options are used, RAVEN will attempt to find the nodes’
information in the enviroment variable PBS NODEFILE.

* The cores needed can be specified manually with the <coresneeded>. This is
directly used in the qsub command select statement.

* The max memory needed can be specified with the <memory> XML node. This
will be used in the qsub command select statement.

* The placement can be specified with the <place> XML node. This will be used
in the qsub place statement.

* There is a “mpilegacy” mode. This probably will be removed in the future. In this
mode exec can be forced to run on one shared memory node with the <NoSplitNode>.
If this is present, the splitting apart of the batches will put each batch on one shared
memory node. Without <NoSplitNode>, they can be split across nodes. There
is an option maxOnNode which puts at most maxOnNode number of mpi pro-
cesses on one node. <NoSplitNode> can cause processes to not be placed,
so <NoSplitNode> should not be used unless needed. If limiting the number
of mpi processes on one node is desired without forcing them to only run on one
node, <LimitNode> can be used. Both <NoSplitNode> and <LimitNode>
can have a noOverlap which prevents multiple batches from running on a single
node.

In addition, this flag activates the remote (PBS) execution of internal Models (e.g.
ROMs, ExternalModels, PostProcessors, etc.). If this node is not present, the inter-
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nal Models are run using a multi-threading approach (i.e. master processor, multiple
parallel threads)

• <CustomMode>, xml node, optional field, is an xml node where “advanced” users can
implement newer “modes.” Please refer to sub-section 6.4 for advanced users.

• <queueingSoftware>, string, optional field. RAVEN has support for the PBS queueing
system. If the platform provides a different queueing system, the user can specify its name
here (e.g., PBS PROFESSIONAL, etc.).
Default: PBS PROFESSIONAL

• <expectedTime>, colum separated string, optional field (mpi or custom mode), speci-
fies the time the whole calculation is expected to last. The syntax of this node is hours:minutes:seconds
(e.g. 40:10:30 equals 40 hours, 10 minutes, 30 seconds). After this period of time, the
HPC system will automatically stop the simulation (even if the simulation is not completed).
It is preferable to rationally overestimate the needed time.
Default: 10:00:00 (10 hours.)

6.3 RunInfo: Example Cluster Usage

For this example, we have a PBSPro cluster, and there are thousands of node, and each node has 4
processors that share memory. There are a couple different ways this can be used. One way is to
use interactive mode and have a RunInfo block:

<RunInfo>
<WorkingDir>.</WorkingDir>
<Sequence>FirstMRun</Sequence>
<batchSize>3</batchSize>
<NumThreads>4</NumThreads>
<mode>mpi</mode>
<NumMPI>2</NumMPI>

</RunInfo>

Then the commands can be used:

#Note: select=NumMPI*batchSize, ncpus=NumThreads
qsub -l select=6:ncpus=4:mpiprocs=1 -l walltime=10:00:00 -I
#wait for processes to be allocated and interactive shell to start

#Switch to the correct directory
cd $PBS_O_WORKDIR

#Load the module with the raven libraries
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module load raven-devel-gcc

#Start Raven
python ../../framework/Driver.py test_mpi.xml

Alternatively, RAVEN can be asked to submit the qsub directory. With this, the RunInfo is:

<RunInfo>
<WorkingDir>.</WorkingDir>
<Sequence>FirstMQRun</Sequence>
<batchSize>3</batchSize>
<NumThreads>4</NumThreads>
<mode>

mpi
<runQSUB/>

</mode>
<NumMPI>2</NumMPI>
<expectedTime>10:00:00</expectedTime>

</RunInfo>

In this case, the command run from the cluster submit node:

python ../../framework/Driver.py test_mpiqsub_local.xml

6.4 RunInfo: Advanced Users

This sub-section addresses some customizations of the running environment that are possible in
RAVEN. Firstly, all the keywords reported in the previous sections can be pre-defined by the user in
an auxiliary XML input file. Every time RAVEN gets instantiated (i.e. the code is run), it looks for
an optional file, named “default runinfo.XML” contained in the “\home\username\.raven\”
directory (i.e. “\home\username\.raven\default runinfo.XML”). This file (same syn-
tax as the RunInfo block defined in the general input file) will be used for defining default values
for the data in the RunInfo block. In addition to the keywords defined in the previous sections, in
the <RunInfo> node, an additional keyword can be defined:

• <DefaultInputFile>, string, optional field. In this block, the user can change the
default xml input file RAVEN is going to look for if none have been provided as a command-
line argument.
Default: “test.xml”.
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As already mentioned, this file is read to define default data for the RunInfo block. This means
that all the keywords defined here will be overridden by any values specified in the actual RAVEN
input file.
In section 6.2, it is explained how RAVEN can handle the queue and parallel systems. If the
currently available “modes” are not suitable for the user’s system (workstation, HPC system, etc.),
it is possible to define a custom “mode” modifying the <RunInfo> block as follows:

<RunInfo>
...
<CustomMode file="newMode.py" class="NewMode">

aNewMode
</CustomMode>
<mode>aNewMode</mode>
...

</RunInfo>

The file field can use %BASE WORKING DIR% and %FRAMEWORK DIR% to specify the
location of the file with respect to the base working directory or the framework directory.

The python file should define a class that inherits from Simulation.SimulationMode of
the RAVEN framework and overrides the necessary functions. Generally, modifySimulation
will be overridden to change the precommand or postcommand parts which will be added before
and after the executable command. An example Python class is given below with the functions
that can and should be overridden:

import Simulation
class NewMode(Simulation.SimulationMode):

def remoteRunCommand(self, runInfoDict):
# If it returns a dictionary, then run the command in args
# Example: {"args":["ssh","remotehost","raven_framework"]}
# Note that this command needs to be able to tell when it
# is running remotely, and then return None at that point
return None

def modifyInfo(self, runInfoDict):
# modifyInfo is called after the runInfoDict has been
# setup and allows the mode to change any parameters that
# need changing. This typically modifies the precommand and
# the postcommand that are put before/after the command.
# In order to change them, return a dictionary with new values.
# Those new values will be used.
return {}

def XMLread(self,XMLNode):
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# XMLread is called with the mode node, and can be used to
# get extra parameters needed for the simulation mode.
pass

RAVEN’s Job Handler module controls the creation and execution of individual code runs. Es-
sentially, the SimulationMode class may be used when it is necessary to customize that behavior.
First, it allows providing a remote command for running RAVEN. This first method can be used
if for example RAVEN needs to be run on a different machine such as a head node of a computer
cluster. In such a case, a remoteRunCommand function can be created that causes RAVEN to be
instantiated on the cluster head node (in cases where that is different than the computer where the
user is currently working). Secondly, (and usually easier when this is sufficient) the Simulation-
Mode class allows modifying the various run info parameters before the code is run.

For modification of the run info parameters, generally the two most important are precommand
and postcommand. They are placed in front and back before running the code. So for example if
precommand is ‘mpiexec -n 3’ and postcommand is ‘–number-threads=4’ and the code command is
‘runIt’ then the full command would be: ‘mpiexec -n 3 runIt –number-threads=4’ The precommand
and postcommand are used for any run type that is ‘parallel’, but not for ‘serial’ codes. They can
be modified by overriding the modifyInfo method and returning a new dictionary with new
values. The runInfoDict in the simulation is passed in.

To help with these commands, there are several variables that are substituted in before running
the command. These are:

%INDEX% Contains the zero-based index in list of running jobs. Note that this is stable for the
life of the job. After the job finishes, this is reused. An example use would be if there were
four cpus and the batch size was four, the %INDEX% could be used to determine which cpu
to run on.

%INDEX1% Contains the one-based index in the list of running jobs, same as %INDEX%+1

%CURRENT ID% zero-based id for the job handler. This starts as 0, and increases for each job
the job handler starts.

%CURRENT ID1% one-based id for the job handler, same as %CURRENT ID%+1

%SCRIPT DIR% Expands to the full path of the script directory (raven/scripts)

%FRAMEWORK DIR% Expands to the full path of the framework directory (raven/frame-
work)

%WORKING DIR% Expands to the working directory where the input is

%BASE WORKING DIR% Expands to the base working directory given in RunInfo. This will
likely be a parent of WORKING DIR
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%METHOD% Expands to the environmental variable $METHOD

%NUM CPUS% Expands to the number of cpus to use per single batch. This is NumThreads in
the XML file.

The final joining of the commands and substituting the variables is done in the JobHandler
class.

6.5 RunInfo: Examples

Here we present a few examples using different components of the RunInfo node:

<RunInfo>
<WorkingDir>externalModel</WorkingDir>
<Sequence>MonteCarlo</Sequence>
<batchSize>100</batchSize>
<NumThreads>4</NumThreads>
<mode>mpi</mode>
<NumMPI>2</NumMPI>

</RunInfo>

<Files>
<Input name='lorentzAttractor.py'

type=''>lorentzAttractor.py</Input>
</Files>

This examples specifies the working directory (WorkingDir) where the necessary file (Files)
is located and to run a series of 100 (batchSize) Monte-Carlo calculations (Sequence).
MPI mode (mode) is used along with 4 threads (NumThreads) and 2 MPI processes per run
(NumMPI).
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7 Files

The <Files> block defines any files that might be needed within the RAVEN run. This could
include inputs to the Model, pickled ROM files, or CSV files for postprocessors, to name a few.
Each entry in the <Files> block is a tag with the file type. Files given through the input XML at
this point are all <Input> type. Each <Input> node has the following attributes:

• name, required string attribute, user-defined name of the file. This does not need to be the
actual filename; this is the name by which RAVEN will identify the file. Note: As with
other objects, this name can be used to refer to this specific entity from other input blocks in
the XML.

• type, optional string attribute, a type label for this file. While RAVEN does not directly
make use of file types, they are available in the CodeInterface as identifiers. If not provided,
the type will be stored as python None type.

• perturbable, optional boolean attribute, flag to indicate whether a file can be perturbed
or not. RAVEN does not directly use this attribute, but it is availabe in the CodeInterface. If
not provided, defaults to True.

• subDirectory, optional string attribute, sub-directory that should be created in the per-
turbation process. The file specified in the body of the XML node should be located in the
subDirectory under the workingDir specified in the <RunInfo> XML block (i.e.
workingDir/subDirectory). If specified, the file will be placed in the sub-directory. For
example, in a MultiRun step, the file will be copied into
workingDir/stepName/%counter%/subDirectory, where workingDir is the working
directory specified in the RunInfo XML block, stepName is the name of the step, /%counter%
is the realization identifier (e.g. 1,2, etc.) and subDirectory is the sub-directory here speci-
fied. If not provided, defaults to an empty string.

For example, if the files templateInput.i, materials.i, history.i, mesh.e are
required to run a Model, the <Files> block might appear as:

...
<Files>

<Input name='main' type='maininput'>templateInput.i</Input>
<Input name='mat' type='mtlinput' >materials.i</Input>
<Input name='hist' type='histinput'>history.i</Input>
<Input name='mesh' type='mesh'

perturbable='false'>mesh.e</Input>
<Input name='fileInSubDir' type=''

subDirectory="theSubDirectory">theFileInTheSubDir.inp</Input>
</Files>
...

</Simulation>
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8 VariableGroups

The <VariableGroups> block is an optional input for the convenience of the user. It allows
the possibility of creating a collection of variables instead of re-listing all the variables in places
throughout the input file, such as DataObjects, ROMs, and ExternalModels. Each entry in the
<VariableGroups> block has a distinct name and list of each constituent variable in the group.
Additionally, set operations can be used to construct variable groups from other variable groups, by
listing them in node text along with the operation to perform. The following types of set operations
are included in RAVEN:

• +, Union, the combination of all variables in the ’base’ set and listed set,

• -, Complement, the relative complement of the listed set in the ’base’ set,

• ˆ, Intersection, the variables common to both the ’base’ and listed set,

• %, Symmetric Difference, the variables in only either the ’base’ or listed set, but not both.

Multiple set operations can be performed by separating them with commas in the text of the group
node, whether they be variable groups or single variables. In the event a circular dependency loop
is detected, an error will be raised. VariableGroups are evaluated in the order of entries listed in
their node text.

When using the variable groups in a node, they can be listed alone or as part of a comma-
separated list. The variable group name will only be substituted in the text of nodes, not attributes
or tags.

Each <Group> node has the following attributes:

• name, required string attribute, user-defined name of the group. This is the identifier that
will be used elsewhere in the RAVEN input.

An example of constructing and using variable groups is listed here. The variable groups
’x odd’, ’x even’, ’x first’, and ’y group’ are constructed independently, and the re-
mainder are examples of other operations.

...
<VariableGroups>

<Group name="x_odd" >x1,x3,x5</Group>
<Group name="x_even" >x2,x4,x6</Group>
<Group name="x_first" >x1,x2,x3</Group>
<Group name="y_group" >y1,y2</Group>
<Group name="add_remove">x_first,-x1,+ x4,+x5</Group>
<Group name="union" >x_odd,+x_even</Group>
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<Group name="complement">x_odd,-x_first</Group>
<Group name="intersect" >x_even,ˆx_first</Group>
<Group name="sym_diff" >x_odd,% x_first</Group>

</VariableGroups>
...
<DataObjects>

<PointSet name="dataset">
<Input>union</Input>
<Output>y_group</Output>

</PointSet>
</DataObjects>
...

</Simulation>
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9 Distributions

RAVEN provides support for several probability distributions. Currently, the user can choose
among several 1-dimensional distributions and N -dimensional ones, either custom or multidimen-
sional normal.

The user will specify the probability distributions, that need to be used during the simulation,
within the <Distributions> XML block:

<Simulation>
...

<Distributions>
<!-- All the necessary distributions will be listed here -->

</Distributions>
...

</Simulation>

In the next two sub-sections, the input requirements for all of the distributions are reported.

9.1 1-Dimensional Probability Distributions

This sub-section is organized in two different parts: 1) continuous 1-D distributions and 2) dis-
crete 1-D distributions. These two paragraphs cover all the requirements for using the different
distribution entities.

9.1.1 1-Dimensional Continuous Distributions

In this paragraph all the 1-D distributions currently available in RAVEN are reported.

Firstly, all the probability distributions functions in the code can be truncated by using the
following keywords:

<Distributions>
...
<aDistributionType>

...
<lowerBound>aFloatValue</lowerBound>
<upperBound>aFloatValue</upperBound>
...

</aDistributionType>

46



</Distributions>

Each distribution has a pre-defined, default support (domain) based on its definition, however these
domains can be shifted/stretched using the appropriate <low> and <high> parameters where
applicable, and/or truncated using the nodes in the example above, namely <lowerBound> and
<upperBound>. For example, the Normal distribution domain is [−∞,+∞], and thus cannot be
shifted or stretched, as it is already unbounded, but can be truncated. RAVEN currently provides
support for 13 1-Dimensional distributions. In the following paragraphs, all the input requirements
are reported and commented.

9.1.1.1 Beta Distribution

The Beta distribution is parameterized by two positive shape parameters, denoted by α and β,
that appear as exponents of the random variable. Its default support (domain) is x ∈ [0, 1]. The
distribution domain can be changed, specifying new boundaries, to fit the user’s needs. The user
can specify a Beta distribution in two ways. The standard is to provide the parameters <low>,
<high>, <alpha>, and <beta>. Alternatively, to approximate a normal distribution that falls to
0 at the endpoints, the user may provide the parameters <low>, <high>, and <peakFactor>.
The peak factor is a value between 0 and 1 that determines the peakedness of the distribution. At 0
it is dome-like (α = β = 4) and at 1 it is very strongly peaked around the mean (α = β = 100). A
reasonable approximation to a Gaussian normal is a peak factor of 0.5.

The specifications of this distribution must be defined within a <Beta> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• Standard initialization:

– <alpha>, float, conditional required parameter, first shape parameter. If specified,
<beta> must also be inputted and <peakFactor> can not be specified.

– <beta>, float, conditional required parameter, second shape parameter. If specified,
<alpha> must also be inputted and <peakFactor> can not be specified.

– <low>, float, optional parameter, lower domain boundary.
Default: 0.0

– <high>, float, optional parameter, upper domain, boundary.
Default: 1.0
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• Alternative initialization:

– <peakFactor>, float, optional parameter, alternative to specifying <alpha> and
<beta>. Acceptable values range from 0 to 1.

– <low>, float, optional parameter, lower domain boundary.
Default: 0.0

– <high>, float, optional parameter, upper domain, boundary.
Default: 1.0

Example:

<Distributions>
...
<Beta name='aUserDefinedName'>

<low>aFloatValue</low>
<high>aFloatValue</high>
<alpha>aFloatValue</alpha>
<beta>aFloatValue</beta>

</Beta>
<Beta name='aUserDefinedName2'>

<low>aFloatValue</low>
<high>aFloatValue</high>
<peakFactor>aFloatValue</peakFactor>

</Beta>
...

</Distributions>

9.1.1.2 Exponential Distribution

The Exponential distribution has a default support of x ∈ [0,+∞).

The specifications of this distribution must be defined within an <Exponential> XML
block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

• <lambda>, float, required parameter, rate parameter.
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• <low>, float, optional parameter, lower domain boundary.
Default: 0.0

Example:

<Distributions>
...
<Exponential name='aUserDefinedName'>

<lambda>aFloatValue</lambda>
<low>aFloatValue</low>

</Exponential>
...

</Distributions>

9.1.1.3 Gamma Distribution

The Gamma distribution is a two-parameter family of continuous probability distributions. The
common exponential distribution and χ-squared distribution are special cases of the gamma distri-
bution. Its default support is x ∈ [0,+∞].

The specifications of this distribution must be defined within a <Gamma> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <alpha>, float, required parameter, shape parameter.

• <beta>, float, optional parameter, 1/scale or the inverse scale parameter.
Default: 1.0

• <low>, float, optional parameter, lower domain boundary.
Default: 0.0

Example:

<Distributions>
...
<Gamma name='aUserDefinedName'>

<alpha>aFloatValue</alpha>
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<beta>aFloatValue</beta>
<low>aFloatValue</low>

</Gamma>
...

</Distributions>

9.1.1.4 Laplace Distribution

The Laplace distribution is a two-parameter continuous probability distribution. It is the distri-
bution of the differences between two independent random variables with identical exponential
distributions. Its default support is x ∈ (−∞,+∞).

The specifications of this distribution must be defined within a <Laplace> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <location>, float, required parameter, determines the location or shift of the distribu-
tion.

• <scale>, float, required parameter, must be greater than 0, and determines how spread
out the distribution is.

Example:

<Distributions>
...
<Laplace name='aUserDefinedName'>

<location>aFloatValue</location>
<scale>aFloatValue</scale>

</Laplace>
...

</Distributions>

9.1.1.5 Logistic Distribution

The Logistic distribution is similar to the normal distribution with a CDF that is an instance of a
logistic function (Cdf(x) = 1

1+e−
(x−location)

scale
)
). It resembles the normal distribution in shape but has
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heavier tails (higher kurtosis). Its default support is x ∈ [−∞,+∞].

The specifications of this distribution must be defined within a <Logistic> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <location>, float, required parameter, the distribution mean.

• <scale>, float, required parameter, scale parameter that is proportional to the standard
deviation (σ2 = 1

3
π2scale2).

Example:

<Distributions>
...
<Logistic name='aUserDefinedName'>

<location>aFloatValue</location>
<scale>aFloatValue</scale>

</Logistic>
...

</Distributions>

9.1.1.6 LogNormal Distribution

The LogNormal distribution is a distribution with the logarithm of the random variable being
normally distributed. Its default support is x ∈ [0,+∞].

The specifications of this distribution must be defined within a <LogNormal> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <mean>, float, required parameter, the log of the distribution mean or expected value.

• <sigma>, float, required parameter, standard deviation.
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• <low>, float, optional parameter, lower domain boundary.
Default: 0.0

Note: The <mean> and <sigma> listed above are NOT the mean and standard deviation of the
distribution; they are the mean and standard deviation of the log of the distribution. Using the
following notation:

• µ`: the µ parameter of the lognormal distribution, which RAVEN expects in the <mean>
node;

• σ`: the σ parameter of the lognormal distribution, which RAVEN expects in the <sigma>
node;

• M : the user-desired mean value of the distribution;

• S: the user-desired standard deviation of the distribution;

a conversion is defined to translate from mean M and standard deviation S into the parameters
RAVEN expects:

µ` = log

 M√
1 + S2

M2

 , (1)

σ` =

√
log 1 +

S2

M2
. (2)

Example:

<Distributions>
...
<LogNormal name='aUserDefinedName'>

<mean>aFloatValue</mean>
<sigma>aFloatValue</sigma>
<low>aFloatValue</low>

</LogNormal>
...

</Distributions>

9.1.1.7 LogUniform Distribution

The LogNormal distribution is a distribution associated to a variable y = h(x) = ex where
variable x is uniform distributed. This distribution supports not only the case y = h(x) = ex

(natural case) but also the case where y = h(x) = 10x (decimal case).
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Its default support is x ∈ [h(lowerBound), h(upperBound)].

The specifications of this distribution must be defined within a <LogUniform> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <lowerBound>, float, required parameter, domain lower boundary.

• <upperBound>, float, required parameter, domain upper boundary.

• <base>, string, required parameter, case type (decimal or natural).

Example:

<Distributions>
...
<LogUniform name="x_dist">

<upperBound>1.0</upperBound>
<lowerBound>3.0</lowerBound>
<base>natural</base>

</LogUniform>
...

</Distributions>

9.1.1.8 Normal Distribution

The Normal distribution is an extremely useful continuous distribution. Its utility is due to the
central limit theorem, which states that, under mild conditions, the mean of many random variables
independently drawn from the same distribution is distributed approximately normally, irrespective
of the form of the original distribution. Its default support is x ∈ [−∞,+∞].

The specifications of this distribution must be defined within a <Normal> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:
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• <mean>, float, required parameter, the distribution mean or expected value.

• <sigma>, float, required parameter, the standard deviation.

Example:

<Distributions>
...
<Normal name='aUserDefinedName'>

<mean>aFloatValue</mean>
<sigma>aFloatValue</sigma>

</Normal>
...

</Distributions>

9.1.1.9 Triangular Distribution

The Triangular distribution is a continuous distribution that has a triangular shape for its PDF.
Like the uniform distribution, upper and lower limits are “known,” but a “best guess,” of the mode
or center point is also added. It has been recommended as a “proxy” for the beta distribution. Its
default support is x ∈ [min,max].

The specifications of this distribution must be defined within a <Triangular> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <apex>, float, required parameter, peak location

• <min>, float, required parameter, domain lower boundary.

• <max>, float, required parameter, domain upper boundary.

Example:

<Distributions>
...
<Triangular name='aUserDefinedName'>

<apex>aFloatValue</apex>
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<min>aFloatValue</min>
<max>aFloatValue</max>

</Triangular>
...

</Distributions>

9.1.1.10 Uniform Distribution

The Uniform distribution is a continuous distribution with a rectangular-shaped PDF. It is often
used where the distribution is only vaguely known, but upper and lower limits are known. Its
default support is x ∈ [lower, upper].

The specifications of this distribution must be defined within a <Uniform> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <lowerBound>, float, required parameter, domain lower boundary.

• <upperBound>, float, required parameter, domain upper boundary.

Note: Since the Uniform distribution is a rectangular-shaped PDF, the truncation does not have
any effect; this is the reason why the children nodes are the ones generally used for truncated
distributions. Example:

<Distributions>
...
<Uniform name='aUserDefinedName'>

<lowerBound>aFloatValue</lowerBound>
<upperBound>aFloatValue</upperBound>

</Uniform>
...

</Distributions>

9.1.1.11 Weibull Distribution

The Weibull distribution is a continuous distribution that is often used in the field of failure anal-
ysis; in particular, it can mimic distributions where the failure rate varies over time. If the failure
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rate is:

• constant over time, then k = 1, suggests that items are failing from random events;

• decreases over time, then k < 1, suggesting “infant mortality”;

• increases over time, then k > 1, suggesting “wear out” - more likely to fail as time goes by.

Its default support is x ∈ [0,+∞).

The specifications of this distribution must be defined within a <Weibull> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <k>, float, required parameter, shape parameter.

• <lambda>, float, required parameter, scale parameter.

• <low>, float, optional parameter, lower domain boundary.
Default: 0.0

Example:

<Distributions>
...
<Weibull name='aUserDefinedName'>

<lambda>aFloatValue</lambda>
<k>aFloatValue</k>
<low>aFloatValue</low>

</Weibull>
...

</Distributions>

9.1.1.12 Custom1D Distribution

The Custom1D distribution is a custom continuous distribution that can be initialized from a
dataObject generated by RAVEN. This distribution cannot be initialized from a dataObject directly
but through a .csv file. This file must contain the values of either cdf or pdf of the random variable
sampled along the range of the desired random variable. In the distribution block of the RAVEN
input file, the user needs to specify which file (including its working directory) needs to be used

56



to initialize the distribution. In addition, the user is required to specify which type (cdf or pdf) or
values are contained in the file and also the IDs of both the random variable and cdf/pdf. Thus the
csv file contains a set of points that samples the function pdf(x) or cdf(x) for several values of the
stochastic variable x. The user needs to specify which variable IDs correspond to x and pdf(x) (or
cdf(x)). The distribution create a fourth order spline interpolation from the provided input points.
Note that the support of this distribution is set between the minimum and maximum values of the
random variable which are specified in the distribution input file.

Refer to the test example (tests/framework/testdistributionCustom1D.xml) for more clar-
ification.

The specifications of this distribution must be defined within a <Custom1D> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <dataFilename>, string, required parameter, file name to be used to initialize the dis-
tribution.

• <workingDir>, string, optional parameter, relative working directory that contains the
input file.

• <functionType>, string, required parameter, type of initialization values specified in
the input file (pdf or cdf).

• <variableID>, string, required parameter, ID of the variable contained in the input file.

• <functionID>, string, required parameter, ID of the function associated to the vari-
ableID contained in the input file.

Example:

<Distributions>
...

<Custom1D name="pdf_custom">
<dataFilename>PointSetFile2_dump.csv</dataFilename>
<functionID>pdf_values</functionID>
<variableID>x</variableID>
<functionType>pdf</functionType>
<workingDir>custom1D/</workingDir>

</Custom1D>
<Custom1D name="cdf_custom">
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<dataFilename>PointSetFile3_dump.csv</dataFilename>
<functionID>cdf_values</functionID>
<variableID>x</variableID>
<functionType>cdf</functionType>
<workingDir>custom1D/</workingDir>

</Custom1D>
...

</Distributions>

The example above initializes two distributions from two .csv files. For example, the first dis-
tribution retrieves the pdf values, located in the column with label pdfvalues, for several locations
of the variable located in the column with label x in the file PointSetF ile2dump.csv.

9.1.2 1-Dimensional Discrete Distributions.

RAVEN currently supports 3 discrete distributions. In the following paragraphs, the input require-
ments are reported.

9.1.2.1 Bernoulli Distribution

The Bernoulli distribution is a discrete distribution of the outcome of a single trial with only
two results, 0 (failure) or 1 (success), with a probability of success p. It is the simplest building
block on which other discrete distributions of sequences of independent Bernoulli trials can be
based. Basically, it is the binomial distribution (k = 1, p) with only one trial. Its default support is
k ∈ 0, 1.

The specifications of this distribution must be defined within a <Bernoulli> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

• <p>, float, required parameter, probability of success.

Example:

<Distributions>
...
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<Bernoulli name='aUserDefinedName'>
<p>aFloatValue</p>

</Bernoulli>
...

</Distributions>

9.1.2.2 Binomial Distribution

The Binomial distribution is the discrete probability distribution of the number of successes in a
sequence of n independent yes/no experiments, each of which yields success with probability p.
Its default support is k ∈ 0, 1, 2, ..., n.

The specifications of this distribution must be defined within a <Binomial> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <p>, float, required parameter, probability of success.

• <n>, integer, required parameter, number of experiments.

Example:

<Distributions>
...
<Binomial name='aUserDefinedName'>

<n>aIntegerValue</n>
<p>aFloatValue</p>

</Binomial>
...

</Distributions>

9.1.2.3 Geometric Distribution

The Geometric distribution is a one-parameter discrete probability distribution. The distribution
uses the probability p that trial will be successful. The geometric distribution gives the probability
of observing k trials before the first success. Its support is k ∈ 0, 1, 2, ..., n.
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The specifications of this distribution must be defined within a <Geometric> XML block.

This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

• <p>, float, required parameter, the success fraction for the trials.

Example:

<Distributions>
...
<Geometric name='aUserDefinedName'>

<p>aFloatValue</p>
</Geometric>
...

</Distributions>

9.1.2.4 Poisson Distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a
given number of events occurring in a fixed interval of time and/or space if these events occur
with a known average rate and independently of the time since the last event. Its default support is
k ∈ 1, 2, 3, 4, ....

The specifications of this distribution must be defined within a <Poisson> XML block. This
XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

• <mu>, float, required parameter, mean rate of events/time.

Example:
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<Distributions>
...
<Poisson name='aUserDefinedName'>

<mu>aFloatValue</mu>
</Poisson>
...

</Distributions>

9.1.2.5 Categorical Distribution

The Categorical distribution is a discrete distribution that describes the result of a random variable
that can have K possible outcomes. The probability of each outcome is separately specified. The
possible outcomes must be only numerical values (either integer or float numbers). No string can
be assigned to any outcome. There is not necessarily an underlying ordering of these outcomes,
but labels are assigned in describing the distribution (in the range 1 to K). The specifications of
this distribution must be defined within a <Categorical> XML block. This XML node accepts
one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

• <state>, float, required parameter, probability for outcome 1

– outcome, float, required parameter, outcome value.

• <state>, float, required parameter, probability for outcome 2

– outcome, float, required parameter, outcome value.

• ...

• <state>, float, required parameter, probability for outcome K

– outcome, float, required parameter, outcome value.

Example:

<Distributions>
...

<Categorical name='testCategorical'>
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<state outcome="10">0.1</state>
<state outcome="20">0.2</state>
<state outcome="50">0.15</state>
<state outcome="60">0.4</state>
<state outcome="90">0.15</state>

</Categorical>
...

</Distributions>

9.1.2.6 Uniform Discrete Distribution

The UniformDiscrete distribution is a discrete distribution which describes a random variable that
can have N values having equal probability value. This distribution allows the user to choose two
kinds of sampling strategies: with or without replacement. In case the “without replacement” strat-
egy is used, the distribution samples from the set of specified N values reduced by the previously
sampled values. After, the sampler has generated values for all variables, the distribution is reset-
ted (i.e., the set of values that can be sampled is returned to N ). In case the “with replacement”
strategy is used, the distribution samples always from the complete set of specified N values.

The specifications of this distribution must be defined within a <Uniform Discrete>
XML block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

• <lowerBound>, integer, required parameter, lower bound.

• <upperBound>, integer, required parameter, upper bound.

• <nPoints>, integer, optional parameter, number of points between lower and upper
bound

• <strategy>, string, required parameter, type of sampling strategy (withReplacement or
withoutReplacement).

Example:

<Distributions>
...

<UniformDiscrete name="UD_dist">
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<lowerBound>3</lowerBound>
<upperBound>8</upperBound>
<strategy>orderedWithReplacement</strategy>

</UniformDiscrete>
...

</Distributions>

9.1.2.7 Markov Categorical Distribution

The MarkovCategorical distribution is a specific discrete categorical distribution describes a ran-
dom variable that can have K possible outcomes, based on the steady state probabilities provided
by Markov model.

• <transition>, float, optional field, the transition matrix of given Markov model.

• <dataFile>, string, optional xml node. The path for the given data file, i.e. the transition
matrix. In this node, the following attribute should be specified:

– fileType, string, optional field, the type of given data file, default is ‘csv’.

Note: Either <transition> or <dataFile> is required to provide the transition ma-
trix.

• <workingDir>, string, optional field, the path of working directory

• <state>, required xml node. The output from this state indicates the probability for out-
come 1. In this node, the following attribute should be specified:

– outcome, float, required field, outcome value.

– index, integer, required field, the index of steady state probabilities corresponding to
the transition matrix.

• <state>, required xml node. The output from this state indicates the probability for out-
come 2. In this node, the following attribute should be specified:

– outcome, float, required field, outcome value.

– index, integer, required field, the index of steady state probabilities corresponding to
the transition matrix.

• ...

• <state>, required xml node. The output from this state indicates the probability for out-
come K. In this node, the following attribute should be specified:
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– outcome, float, required field, outcome value.
– index, integer, required field, the index of steady state probabilities corresponding to

the transition matrix.

Example:
<Simulation>
...
<Distributions>

...
<MarkovCategorical name="x_dist">

<!--dataFile fileType='csv'>transitionFile</dataFile-->
<transition>

-1.1 0.8 0.7
0.8 -1.4 0.2
0.3 0.6 -0.9

</transition>
<state outcome='1' index='1'/>
<state outcome='2' index='2'/>
<state outcome='4' index='3'/>

</MarkovCategorical>
...

</Distributions>
...
</Simulation>

9.2 N-Dimensional Probability Distributions

The group of N -Dimensional distributions allow the user to model stochastic dependences be-
tween parameters. Thus instead of using N distributions for N parameters, the user can define
a single distribution lying in a N -Dimensional space. The following N -Dimensional Probability
Distributions are available within RAVEN:

• MultivariateNormal: Multivariate normal distribution (see Section 9.2.1)

• NDInverseWeight: ND Inverse Weight interpolation distribution (see Section 9.2.2)

• NDCartesianSpline: ND spline interpolation distribution (see Section 9.2.3)

For NDInverseWeight and NDCartesianSpline distributions, the user provides the sampled values
of either CDF or PDF of the distribution. The sampled values can be scattered distributed (for
NDInverseWeight) or over a cartesian grid (for NDCartesianSpline).
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The user could specify, for each N -Dimensional distribution, the parameters of the random
number generator function:

• <initialGridDisc>, positive integer, optional field, user-defined initial grid discretiza-
tion. This parameter specifies the number of discretizations that need to be performed, ini-
tially, for each Dimension in order to find N-Dimensional coordinate that corresponds to the
CDF represented by a random number (0-1);

• <tolerance>, float, optional field, user-defined tolerance in order to find the N-D coor-
dinates corresponding to a random number. This tolerance is expressed in terms of CDF.

in the <samplerInit> block defined in sampler block <samplerInit> (see Section 10).

9.2.1 MultivariateNormal Distribution

the multivariate normal distribution or multivariate Gaussian distribution, is a generalization of the
one-dimensional (univariate) normal distribution to higher dimensions. The multivariate normal
distribution is often used to describe, at least approximately, any set of (possibly) correlated real-
valued random variables each of which clusters around a mean value. The multivariate normal
distribution of a k-dimensional random vector x = [x1, x2, . . . , xk] can be written in the following
notation: x ∼ N (µ, Σ) with with k-dimensional mean vector

µ = [E[x1], E[x2], . . . , E[xk]]

and k × k covariance matrix

Σ = [Cov[xi, xj]], i = 1, 2, . . . , k; j = 1, 2, . . . , k

The probability distribution function for this distribution is the following:

fx(x1, . . . , xk) = 1√
(2π)k|Σ|

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

The specifications of this distribution must be defined within the xml block <MultivariateNormal>.
This XML node needs to contain the attributes:

• name, required string attribute, user-defined identifier of this multivariate normal distribu-
tion. Note: As with other objects, this is the name that can be used to refer to this specific
entity from other input XML blocks.

• method, required string attribute, defines which method is used to generate the multivari-
ate normal distribution. The only allowable methods are ’spline’ and ’pca’.

In RAVEN the MultivariateNormal distribution can be initialized through the following key-
words:
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• <mu>, list of mean values of each dimension

• <covariance>, list of element values in the covariance matrix. There are two types of
<covariance>, based on the type:

– type, string, optional field, specifies the type of covariance, the default type is
’abs’. Possible values for type are ’abs’ and ’rel’. Note: ’abs’ indicates
the covariance is a normal covariance matrix, while ’rel’ indicates the covariance is
a relative covariance matrix. In addition, method ’pca’ can be combined with both
types, and method ’spline’ only accept the type ’abs’

• <transformation>, XML node, optional field, option to enable input parameter trans-
formation using principal component analysis (PCA) approach. If this node is provided,
PCA will be used to compute the principal components of input covariance matrix. The
subnode <rank> is used to indicate the number of principal components that will be used
for the input transformation. The content will specify one attribute:

– <rank>, positive integer, required field, user-defined dimensionality reduction.

Example:

<Distributions>
...

<MultivariateNormal name='MultivariateNormal_test'
method='spline'>
<mu>0.0 60.0</mu>
<covariance>
1.0 0.7
0.7 1.0
</covariance>

</MultivariateNormal>
<MultivariateNormal name='MultivariateNormal_abs'

method='pca'>
<mu>0.0 60.0</mu>
<covariance type='abs'>
1.0 0.7
0.7 1.0
</covariance>

</MultivariateNormal>
<MultivariateNormal name='MultivariateNormal_rel'

method='pca'>
<mu>0.0 60.0</mu>
<covariance type='rel'>
1.0 0.7
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0.7 1.0
</covariance>

</MultivariateNormal>
...

</Distributions>

In the following, we defined a distribution with a transformation node using PCA method. The
number of principal components is defined in <rank>. In this distribution, PCA is employed to
restruct the multivariate normal distribution. In addition, the size of uncorrelated variables is also
determined by <rank>.

<Distributions>
...

<MultivariateNormal name='MultivariateNormal_test'
method='pca'>
<mu>0.0 10.0 20.0</mu>
<covariance type="abs">

1.0 0.7 -0.2
0.7 1.0 0.4
-0.2 0.4 1.0

</covariance>
<transformation>

<rank>2</rank>
</transformation>

</MultivariateNormal>
...

</Distributions>

9.2.2 NDInverseWeight Distribution

The NDInverseWeight distribution creates a N -Dimensional distribution given a set of points scat-
tered distributed. These points sample the PDF of the original distribution. Distribution values
(PDF or CDF) are calculated using the inverse weight interpolation scheme.

The specifications of this distribution must be defined within a <NDInverseWeight> XML
block. This XML node accepts the following attributes:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In RAVEN the NDInverseWeight distribution can be initialized through the following nodes:
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• <p>, float, required parameter, power parameter. Greater values of p assign greater influ-
ence to values closest to the interpolated point.

• <data filename>, string, required parameter, name of the data file containing scattered
values (file type ’.txt’).

– type, required string attribute, indicates if the data in indicated file is PDF or CDF.

• <working dir>, string, required parameter, folder location of the data file

Example:

<Distributions>
...
<NDInverseWeight name='...'>

<p>...</p>
<dataFilename type='...'>...</dataFilename>
<workingDir>...</workingDir>

</NDInverseWeight>
...

</Distributions>

Each data entry contained in data filename is listed row by row and must be listed as follows:

• number of dimensions

• number of sampled points

• ND coordinate of each sampled point

• value of each sampled point

As an example, the following shows the data entries contained in data filename for a 3-dimensional
data set that contained two sampled CDF values: ([0.0,0.0,0.0], 0.1) and ([1.0, 1.0,0.0], 0.8)

Example scattered data file:

3
2
0.0
0.0
0.0
1.0
1.0
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0.0
0.1
0.8

9.2.3 NDCartesianSpline Distribution

The NDCartesianSpline distribution creates a N -Dimensional distribution given a set of points
regularly distributed on a cartesian grid. These points sample the PDF of the original distribution.
Distribution values (PDF or CDF) are calculated using the ND spline interpolation scheme.

The specifications of this distribution must be defined within a <NDCartesianSpline>
XML block. This XML node accepts the following attributes:

• name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In RAVEN the NDCartesianSpline distribution can be initialized through the following nodes:

• <data filename>, string, required parameter, name of the data file containing scattered
values (file type ’.txt’).

– type, required string attribute, indicates if the data in indicated file is PDF or CDF.

• <working dir>, string, required parameter, folder location of the data file

Example:

<Distributions>
...
<NDCartesianSpline name='...'>

<dataFilename type='...'>...</dataFilename>
<workingDir></workingDir>

</NDCartesianSpline>
...

</Distributions>

Each data entry contained in data filename is listed row by row and must be listed as follows:

• number of dimensions

• number of discretization for each dimension
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• discretization values for each dimension

• value of each sampled point

As an example, the following shows the data entries contained in data filename for a 2-
dimensional CDF data set on the following grid (x, y):

• first dimension (x): -0.5, 0.5

• first dimension (y): 1.0 2.0 3.0

Example scattered data file:

2
2
3
-0.5
0.5
1.0
2.0
3.0
CDF value of (-0.5,1.0)
CDF value of (+0.5,1.0)
CDF value of (-0.5,2.0)
CDF value of (+0.5,2.0)
CDF value of (-0.5,3.0)
CDF value of (+0.5,3.0)
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10 Samplers

The sampler is probably the most important entity in the RAVEN framework. It performs the driv-
ing of the specific sampling strategy and, hence, determines the effectiveness of the analysis, from
both an accuracy and computational point of view. The samplers, that are available in RAVEN,
can be categorized into three main classes:

• Forward (see Section 10.1)

• Dynamic Event Tree (DET) (see Section 10.2)

• Adaptive (see Section 10.3)

Before analyzing each sampler in detail, it is important to mention that each type has a similar syn-
tax to input the variables to be “sampled”. In the example below, the variable ’variableName’
is going to be sampled by the Sampler ’whatever’ using the distribution named
’aDistribution’.

<Simulation>
...
<Samplers>

...
<WhatEverSampler name='whatever'>

...
<variable name='variableName'>

...
<distribution>aDistribution</distribution>
...

</variable>
...

</WhatEverSampler>
...

</Samplers>
...

</Simulation>

As reported in section 19, the variable naming syntax, for external driven codes, depends on the
way the “code interface” has been implemented. For example, if the code has an input structure like
the one reported below (YAML), the variable name might be’I-Level|II-Level|variable’.
In this way, the relative code interface (and input parser) will know which variable needs to be per-
turbed and the “recipe” to access it. As reported in 19, its syntax is chosen by the developer of
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the “code interface” and is implemented in the interface only (no modifications are needed in the
RAVEN code).

Example YAML based Input:

[I-Level]
[./II-Level]

variable = xxx
[../]

[]

Example XML block to define the variables and associated distributions:

<variable name='I-Level|II-Level|variable'>
<distribution>exampleDistribution</distribution>

</variable>

If the variable is associated to a multi-dimensional ND distribution, it is needed to specify
which dimension of the ND distribution is associated to such variable. An example is shown
below: the variable “variableX” is associated to the third dimension of the ND distribution “ND-
distribution”.

<variable name='variableX'>
<distribution dim='3'>NDdistribution</distribution>

</variable>

For most codes, it is prudent that there are no redundant inputs; however there are cases
where this is not reality. For example, if there is a variable ’inner radius’ and a variable
’outer radius’, there may be a third variable ’thickness’ that is actually derived from the
previous two, as ’thickness’ = ’outer radius’ - ’inner radius’. RAVEN supports
this type of redundant input through a Function entity. In this case, instead of a <distribution>
node in the <variable> block, there is a <function> node, specifying the name of the func-
tion (defined in the <Functions> block). In order to work properly, this function must have a
method named “evaluate” that returns a single python float object. In this way, multiple variables
can be associated with the same function. For example,

...
<Functions>

<External name='torus_calcs' file='torus_calcs.py'>
<variable>outer_radius</variable>
<variable>inner_radius</variable>

</External>
<Functions>
...
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<Samplers>
<WhatEverSampler name='myExampleSampler'>

<variable name='inner_radius'>
<distribution>inner_dist</distribution>

</variable>
<variable name='outer_radius'>

<distribution>outer_dist</distribution>
</variable>
<variable name='thickness'>

<function>torus_calcs</function>
</variable>

</WhatEverSampler>
</Samplers>

The corresponding function file ’torus calcs.py’ needs the following method:

def evaluate(self):
return self.outer_radius - self.inner_radius

The ’thickness’ parameter will still be treated as an input for the sake of csv printing and
DataObjects storage.
Note: It is important to notice that if the user use variables with no-Python compatible names (e.g.
parenthesis, etc.), the <alias> system needs to be used to alias the variables.

In the sampler class a special node exists: the <sampler init> node. This node contains
specific parameters that characterize each particular sampler. In addition, <sampler init>
might contain the information regarding the random generator function for each N -Dimensional
distribution (specified in the <dist init> node):

• initial grid disc

• tolerance

An example of <dist init> node is provided below:

<distInit>
<distribution name= 'ND_dist_name'>

<initialGridDisc>5</initialGridDisc>
<tolerance>0.2</tolerance>

</distribution>
</distInit>
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In the <sampler init> node it is possible to add also the subnode <globalGrid>. The
<globalGrid> can be used in two cases:

• 1D distributions: an identical grid that is associated to several distributions

• ND distribution: a grid associated to a single ND distribution. This is the case when a
stratified sampling is performed on the CDF of an ND distribution: the <globalGrid> is
shared among the variables associated to the Nd distribution

10.1 Forward Samplers

The Forward sampler category collects all the strategies that perform the sampling of the input
space without exploiting, through dynamic learning approaches, the information made available
from the outcomes of calculations previously performed (adaptive sampling) and the common sys-
tem evolution (patterns) that different sampled calculations can generate in the phase space (dy-
namic event tree). In the RAVEN framework, several different “Forward” samplers are available:

• Monte Carlo (MC)

• Stratified

• Grid Based

• Sparse Grid Collocation

• Sobol Decomposition

• Response Surface Design of Experiment

• Factorial Design of Experiment

• Ensemble Forward Sampling strategy

• Custom Sampling strategy

From a practical point of view, these sampling strategies represent different ways to explore
the input space. In the following paragraphs, the input requirements and a small explanation of the
different sampling methodologies are reported.
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10.1.1 Monte Carlo

The Monte-Carlo sampling approach is one of the most well-known and widely used approaches
to perform exploration of the input space. The main idea behind MonteCarlo sampling is to ran-
domly perturb the input space according to uniform or parameter-based probability density func-
tions.

The specifications of this sampler must be defined within a <MonteCarlo> XML block.
This XML node accepts the following attributes:

• name, required string attribute, user-defined name of this Sampler. N.B. As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks (xml);

In the MonteCarlo input block, the user needs to specify the variables need to be sampled. As
already mentioned, these variables are inputted within consecutive xml blocks called <variable>.
In addition, the settings for this sampler need to be specified in the <samplerInit>XML block:

• <samplerInit>, XML node, required parameter. In this xml-node,the following xml
sub-nodes need to be specified:

– <limit>, integer,required field, number of MonteCarlo samples needs to be gener-
ated;

– <initialSeed>, integer, optional field, initial seeding of random number generator

– <reseedEachIteration>, boolean/string(case insensitive), optional field, per-
form a re-seeding for each sample generated (True values = True, yes, y, t).
Default: False;

– <distInit>, integer, optional field, in this node the user specifies the initialization
of the random number generator function for each N-Dimensional Probability Distri-
butions (see Section 9.2).

– <samplingType>, string, optional field, sub-type of sampling
Default: None. the user can choose to perform a Monte-Carlo sampling where the
location of the samples in the input space is uniformly distributed and not gener-
ated accordingly to the specific set of distributions. This can be specificed in the
<samplingType> with the kewyword “uniform”. This option works only if all
the distributions have an upper and lower bound specified (i.e., <lowerBound> and
<upperBound>). Allowed fields for this node are “None” and “uniform”.

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.
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– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry
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By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

If the input parameters are correlated, the MonteCarlo sampling approach can be also used
if the user specified a multivariate distributions inside the <Distributions> (see Section
9.2). Furthermore, if the covariance matrix is provided and the input parameters is assumed
to have the multivariate normal distribution, one can also use MonteCarlo approach to sam-
ple the input parameters in the transformed space (aka subspace, reduced space). If this is the
case, the user needs to provide additional information, i.e. the <transformation> under
<MultivariateNormal> of <Distributions> (more information can be found in Section
9.2). In addition, the node <variablesTransformation> is also required for MonteCarlo
sampling. This node is used to tranform the variables specified by <latentVariables> in
the transformed space of input into variables spefified by <manifestVariables> in the input
space. The variables listed in <latentVariables> should be predefined in <variable>,
and the variables listed in <manifestVariables> are used by the <Models>.

• <variablesTransformation>, optional field. this XML node accepts one attribute:

– distribution, required string attribute, the name for the distribution defined in the
XML node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.

In addition, this XML node also accepts three childen nodes:

– <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

– <manifestVariables>, comma separated string, required field, user-defined man-
ifest variables that can be used by the model.
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– <manifestVariablesIndex>, comma separated string, optional field, user-defined
manifest variables indices paired with <manifestVariables>. These indices in-
dicate the position of manifest variables associated with multivariate normal distribu-
tion defined in the XML node <Distributions>. The indices should be postive
integer. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

– <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

Assembler Objects These objects are either required or optional depending on the functionality
of the MonteCarlo Sampler. The objects must be listed with a rigorous syntax that, except for the
XML node tag, is common among all the objects. Each of these nodes must contain 2 attributes
that are used to identify them within the simulation framework:

• class, required string attribute, the main “class” of the listed object. For example, it can
be ’Models’, ’Functions’, etc.

• type, required string attribute, the object identifier or sub-type. For example, it can be
’ROM’, ’External’, etc.

The MonteCarlo approach requires or optionally accepts the following object types:

• <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

• <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.
Default: 1e-14

• <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.
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Example:

<Samplers>
...
<MonteCarlo name='MCname'>

<samplerInit>
<limit>10</limit>
<initialSeed>200286</initialSeed>
<reseedEachIteration>false</reseedEachIteration>
<distInit>
<distribution name= 'ND_InverseWeight_P'>

<initialGridDisc>10</initialGridDisc>
<tolerance>0.2</tolerance>

</distribution>
</distInit>

</samplerInit>
<variable name='var1'>

<distribution>aDistributionNameDefinedInDistributionBlock
</distribution>

</variable>
<Restart class='DataObjects' type='PointSet'>data</Restart>

</MonteCarlo>
...

</Samplers>
...
<PointSet name="data">

<Input>var1</Input>
<Output>ans</Output>

</PointSet>
...

10.1.2 Grid

The Grid sampling approach is probably the simplest exploration approach that can be employed
to explore an uncertain domain. The idea is to construct anN -dimensional grid where each dimen-
sion is represented by one uncertain variable. This approach performs the sampling at each node
of the grid. The sampling of the grid consists in evaluating the answer of the system under all pos-
sible combinations among the different variables’ values with respect to a predefined discretization
metric. In RAVEN two discretization metrics are available: 1) cumulative distribution function,
and 2) value. Thus, the grid meshing can be input via probability or variable values. Regarding the
N-dimensional distributions, the user can specify for each dimension the type of grid to be used
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(i.e., value or CDF). Note the discretization of the CDF, only for the grid sampler, is performed on
the marginal distribution for the specific variable considered.

The specifications of this sampler must be defined within a <Grid> XML block. This XML
node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Grid> input block, the user needs to specify the variables to sample. As already men-
tioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

* type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.

* construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ’CDF’ or ’value’).
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Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

* construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

· steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lowerBound, the largest,
the upperBound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upperBound− lowerBound)/steps

* construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ’CDF’, in the
body of <grid>, the user will specify the CDF probability thresholds (nodaliza-
tion in probability). All the bins are checked against the associated <distribution>
bounds. If one or more of them falls outside the distribution’s bounds, the code
will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

81



– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

If the input parameters are correlated, the Grid sampling approach can be also used if the
user specified a multivariate distributions inside the <Distributions> (see Section 9.2). Fur-
thermore, if the covariance matrix is provided and the input parameters is assumed to have the
multivariate normal distribution, one can also use Grid approach to sample the input parameters in
the transformed space (aka subspace, reduced space). This means one creates the grids of variables
listed by <latentVariables> in the transformed space. If this is the case, the user needs to
provide additional information, i.e. the <transformation> under <MultivariateNormal>
of <Distributions> (more information can be found in Section 9.2). In addition, the node
<variablesTransformation> is also required for Grid sampling. This node is used to
tranform the variables specified by <latentVariables> in the transformed space of input
into variables spefified by <manifestVariables> in the input space. The variables listed
in <latentVariables> should be predefined in <variable>, and the variables listed in
<manifestVariables> are used by the <Models>.

• <variablesTransformation>, optional field. this XML node accepts one attribute:

– distribution, required string attribute, the name for the distribution defined in the
XML node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.

In addition, this XML node also accepts three childen nodes:
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– <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

– <manifestVariables>, comma separated string, required field, user-defined man-
ifest variables that can be used by the model.

– <manifestVariablesIndex>, comma separated string, optional field, user-defined
manifest variables indices paired with <manifestVariables>. These indices in-
dicate the position of manifest variables associated with multivariate normal distribu-
tion defined in the XML node <Distributions>. The indices should be postive
integer. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

– <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

Assembler Objects These objects are either required or optional depending on the functional-
ity of the Grid Sampler. The objects must be listed with a rigorous syntax that, except for the XML
node tag, is common among all the objects. Each of these nodes must contain 2 attributes that are
used to identify them within the simulation framework:

• class, required string attribute, the main “class” of the listed object. For example, it can
be ’Models’, ’Functions’, etc.

• type, required string attribute, the object identifier or sub-type. For example, it can be
’ROM’, ’External’, etc.

The Grid approach requires or optionally accepts the following object types:

• <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

• <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.
Default: 1e-14
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• <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.

Example:

<Samplers>
...
<Grid name='Gridname'>

<variable name='var1'>
<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>
<grid type='value' construction='equal' steps='100' >0.2

10</grid>
</variable>
<variable name='var2'>

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
<grid type='CDF' construction='equal' steps='5' >0.2

0.8</grid>
</variable>
<variable name='var3'>

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type='value' construction='equal' steps='100' >0.2

21.0</grid>
</variable>
<variable name='var4'>

<distribution>aDistributionNameDefinedInDistributionBlock4
</distribution>
<grid type='CDF' construction='equal' steps='5' >0.2

1.0</grid>
</variable>
<variable name='var5'>

<distribution>aDistributionNameDefinedInDistributionBlock5
</distribution>
<grid type='value' construction='custom'>0.2 0.5

10.0</grid>
</variable>
<variable name='var6'>

<distribution>aDistributionNameDefinedInDistributionBlock6
</distribution>
<grid type='CDF' construction='custom'>0.2 0.5 1.0</grid>
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</variable>
<Restart class='DataObjects' type='PointSet'>data</Restart>
<restartTolerance>1e-6</restartTolerance>

</Grid>
...

</Samplers>
...
<PointSet name="data">

<Input>var1,var2,var3,var4,var5,var6</Input>
<Output>ans</Output>

</PointSet>
...

Note: A restart example is included here but is not necessary in general.

10.1.3 Sparse Grid Collocation

Sparse Grid Collocation builds on generic Grid sampling by selecting evaluation points based
on characteristic quadratures as part of stochastic collocation for generalized polynomial chaos
uncertainty quantification. In collocation you construct an N-dimensional grid, with each uncertain
variable providing an axis. Along each axis, the points of evaluation correspond to quadrature
points necessary to integrate polynomials (see 15.3.3). In the simplest (and most naive) case,
a N-Dimensional tensor product of all possible combinations of points from each dimension’s
quadrature is constructed as sampling points. The number of necessary samples can be reduced by
employing Smolyak-like sparse grid algorithms, which use reduced combinations of polynomial
orders to reduce the necessary sampling space. The specifications of this sampler must be defined
within a <SparseGridCollocation> XML block. .

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• parallel, optional string attribute, option to disable parallel construction of the sparse
grid. Because of increasing computational expense with increasing input space dimension,
RAVEN will default to parallel construction of the sparse grid.

• outfile, optional string attribute, option to allow the generated sparse grid points and
weights to be printed to a file with the given name.
Default: True

In the <SparseGridCollocation> input block, the user needs to specify the variables to
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sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

In the variable node, the following xml-node needs to be specified:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:
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– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

Because of the tight coupling between the Sampler and the ROM in stochastic collocation for gen-
eralized polynomial chaos, the Sampler needs access to the ROM via the assembler do determine
the polynomials, quadratures, and importance weights to use in each dimension (see 15.3.3).

Assembler Objects These objects are either required or optional depending on the functional-
ity of the SparseGridCollocation Sampler. The objects must be listed with a rigorous syntax that,
except for the XML node tag, is common among all the objects. Each of these nodes must contain
2 attributes that are used to identify them within the simulation framework:

• class, required string attribute, the main “class” of the listed object. For example, it can
be ’Models’, ’Functions’, etc.

• type, required string attribute, the object identifier or sub-type. For example, it can be
’ROM’, ’External’, etc.

The SparseGridCollocation approach requires or optionally accepts the following object types:

• <ROM>, string, required field, the body of this XML node must contain the name of an
appropriate ROM defined in the <Models> block (see Section 15.3).
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• <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

• <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.
Default: 1e-14

• <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.

Example:
<Samplers>

...
<SparseGridCollocation name="mySG" parallel="0">

<variable name="x1">
<distribution>myDist1</distribution>

</variable>
<variable name="x2">
<distribution>myDist2</distribution>

</variable>
<ROM class = 'Models' type = 'ROM' >SCROM</ROM>
<Restart class = 'DataObjects' type = 'PointSet' >solns</Restart>

</SparseGridCollocation>
...

</Samplers>
...
<PointSet name="solns">

<Input>x1,x2</Input>
<Output>y</Output>

</PointSet>
...

In general, SparseGridCollocation requires uncorrelated input parameters. If the input pa-
rameters are correlated, one can transform the correlated parameters into uncorrelated parameters;
the SparseGridCollocation can also be used with the uncorrelated parameters in the transformed
space. Like in the Grid sampler, if the covariance matrix is provided and the input parameters
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are assumed to have the multivariate normal distribution, the SparseGridCollocation can be used.
This means one creates the sparse grids of variables listed by <latentVariables> in the
transformed space. If this is the case, the user needs to provide additional information, i.e. the
<transformation> under <MultivariateNormal> of <Distributions> (more in-
formation can be found in Section 9.2). In addition, the node <variablesTransformation>
is also required for SparseGridCollocation sampler. This node is used to tranform the variables
specified by <latentVariables> in the transformed space of input into variables spefified by
<manifestVariables> in the input space. The variables listed in <latentVariables>
should be predefined in <variable>, and the variables listed in <manifestVariables> are
used by the <Models>.

• <variablesTransformation>, optional field. this XML node accepts one attribute:

– distribution, required string attribute, the name for the distribution defined in the
XML node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.

In addition, this XML node also accepts three childen nodes:

– <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

– <manifestVariables>, comma separated string, required field, user-defined man-
ifest variables that can be used by the model.

– <manifestVariablesIndex>, comma separated string, optional field, user-defined
manifest variables indices paired with <manifestVariables>. These indices in-
dicate the position of manifest variables associated with multivariate normal distribu-
tion defined in the XML node <Distributions>. The indices should be postive
integer. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

– <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

...
<Models>

...
<ExternalModel ModuleToLoad="lorentzAttractor_noK"

name="PythonModule" subType="">
<variables>sigma,rho,beta,x,y,z,time,z0,y0,z0</variables>

</ExternalModel>
<ROM name="SCROM" subType="GaussPolynomialRom">

<Target>and</Target>
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<Features>x1,y1,z1</Features>
<IndexSet>TensorProduct</IndexSet>
<PolynomialOrder>1</PolynomialOrder>

</ROM>
...

</Models>

<Distributions>
...
<MultivariateNormal name='MVNDist' method='pca'>

<transformation>
<rank>3</rank>

</transformation>
<mu>0.0 1.0 2.0</mu>
<covariance type="abs">

1.0 0.6 -0.4
0.6 1.0 0.2
-0.4 0.2 0.8

</covariance>
</MultivariateNormal>
...

</Distributions>

<Samplers>
...
<SparseGridCollocation name='SC'>

<variable name='x0'>
<distribution dim='1'>MVNDist</distribution>

</variable>
<variable name='y0'>

<distribution dim='2'>MVNDist</distribution>
</variable>
<variable name='z0'>

<distribution dim='3'>MVNDist</distribution>
</variable>
<variablesTransformation model="PythonModule">

<latentVariables>x1,y1,z1</latentVariables>
<manifestVariables>x0,y0,z0</manifestVariables>
<method>pca</method>

</variablesTransformation>
<ROM class = 'Models' type = 'ROM' >SCROM</ROM>
<Restart class="DataObjects"
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type="PointSet">solns</Restart>
</SparseGridCollocation>
...

</Samplers>
...
<PointSet name="solns">

<Input>x0,y0,z0</Input>
<Output>ans</Output>

</PointSet>
...

10.1.4 Sobol

The Sobol sampler uses high-density model reduction (HDMR) a.k.a. Sobol decomposition to
approximate a function as the sum of increasing-complexity interactions. At its lowest level (order
1), it treats the function as a sum of the reference case plus a functional of each input dimesion
separately. At order 2, it adds functionals to consider the pairing of each dimension with each
other dimension. The benefit to this approach is considering several functions of small input car-
dinality instead of a single function with large input cardinality. This allows reduced order models
like generalized polynomial chaos (see 15.3.3) to approximate the functionals accurately with few
computations runs. This Sobol sampler uses the associated HDMRRom (see 15.3.4) to determine
at what points the input space need be evaluated. Since Sobol sampler relies on SparseGridCol-
location, it is also compatible with multivariate normal distribution objects. The <Sobol> node
supports the following attributes:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• parallel, optional string attribute, option to disable parallel construction of the sparse
grid. Because of increasing computational expense with increasing input space dimension,
RAVEN will default to parallel construction of the sparse grid.
Default: True

In the <Sobol> input block, the user needs to specify the variables to sample. As already men-
tioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.
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– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

In the variable node, the following xml-node needs to be specified:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry
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By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

Like the SparseGridCollocation, if multivariate normal distribution is provided, the following
node need to be specified:

• <variablesTransformation>, optional field. this XML node accepts one attribute:

– distribution, required string attribute, the name for the distribution defined in the
XML node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.

In addition, this XML node also accepts three childen nodes:

– <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

– <manifestVariables>, comma separated string, required field, user-defined man-
ifest variables that can be used by the model.

– <manifestVariablesIndex>, comma separated string, optional field, user-defined
manifest variables indices paired with <manifestVariables>. These indices in-
dicate the position of manifest variables associated with multivariate normal distribu-
tion defined in the XML node <Distributions>. The indices should be postive
integer. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

– <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

Because of the tight coupling between the Sobol sampler and the HDMRRom, the Sampler
needs access to the ROM via the assembler do determine the polynomials, quadratures, Sobol
order, and importance weights to use in each dimension (see 15.3.4).

93



Assembler Objects These objects are either required or optional depending on the function-
ality of the Sobol Sampler. The objects must be listed with a rigorous syntax that, except for the
XML node tag, is common among all the objects. Each of these nodes must contain 2 attributes
that are used to identify them within the simulation framework:

• class, required string attribute, the main “class” of the listed object. For example, it can
be ’Models’, ’Functions’, etc.

• type, required string attribute, the object identifier or sub-type. For example, it can be
’ROM’, ’External’, etc.

The Sobol approach requires or optionally accepts the following object types:

• <ROM>, string, required field, the body of this XML node must contain the name of an
appropriate ROM defined in the <Models> block (see Section 15.3).

• <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

• <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.
Default: 1e-14

• <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.

Example:
<Samplers>

...
<Sobol name="mySobol" parallel="0">

<variable name="x1">
<distribution>myDist1</distribution>
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</variable>
<variable name="x2">
<distribution>myDist2</distribution>

</variable>
<ROM class = 'Models' type = 'ROM' >myHDMR</ROM>
<Restart class="DataObjects" type="PointSet">solns</Restart>

</Sobol>
...

</Samplers>
...
<PointSet name="solns">

<Input>x1,y2</Input>
<Output>ans</Output>

</PointSet>
...

10.1.5 Stratified

The Stratified sampling approach is a method for the exploration of the input space that consists of
dividing the uncertain domain into subgroups before sampling. In the “stratified” sampling, these
subgroups must be:

• mutually exclusive: every element in the population must be assigned to only one stratum
(subgroup);

• collectively exhaustive: no population element can be excluded.

Then simple random sampling or systematic sampling is applied within each stratum. It is
worthwhile to note that the well-known Latin hypercube sampling represents a specialized version
of the stratified approach, when the domain strata are constructed in equally-probable CDF bins.

The specifications of this sampler must be defined within a <Stratified> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Stratified> input block, the user needs to specify the variables to sample. As already
mentioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:
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– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

* type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.

* construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

* construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

· steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lowerBound, the largest,
the upperBound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upperBound− lowerBound)/steps
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* construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ’CDF’, in the
body of <grid>, the user will specify the CDF probability thresholds (nodaliza-
tion in probability). All the bins are checked against the associated <distribution>
bounds. If one or more of them falls outside the distribution’s bounds, the code
will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
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<ConstantSource class='DataObjects'
type='PointSet'>MyConstants</ConstantSource>

<constant name='C' source='MyConstants'
index='3'>A</constant>

</WhatEverSampler>
</Samplers>

In addition, the settings for this sampler need to be specified in the <samplerInit>XML block:

• <samplerInit>, XML node, required parameter. In this xml-node,the following xml
sub-nodes need to be specified:

– <initialSeed>, integer, optional field, initial seeding of random number generator

– <distInit>, integer, optional field, in this node the user specifies the initialization
of the random number generator function for each N-Dimensional Probability Distri-
butions (see Section 9.2).

As one can see, the input specifications for the Stratified sampler are similar to that of the Grid
sampler. It is important to mention again that for each zone (grid mesh) only a point, randomly
selected, is picked and not all the nodal combinations (like in the Grid sampling).

Assembler Objects These objects are either required or optional depending on the functional-
ity of the Stratified Sampler. The objects must be listed with a rigorous syntax that, except for the
XML node tag, is common among all the objects. Each of these nodes must contain 2 attributes
that are used to identify them within the simulation framework:

• class, required string attribute, the main “class” of the listed object. For example, it can
be ’Models’, ’Functions’, etc.

• type, required string attribute, the object identifier or sub-type. For example, it can be
’ROM’, ’External’, etc.

The Stratified approach requires or optionally accepts the following object types:

• <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:
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• <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.
Default: 1e-14

• <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.

Example:

<Samplers>
...
<Stratified name='StratifiedName'>

<variable name='var1'>
<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>
<grid type='CDF' construction='equal' steps='5' >0.2

0.8</grid>
</variable>
<variable name='var2'>

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
<grid type='value' construction='equal' steps='100' >0.2

21.0</grid>
</variable>
<variable name='var3'>

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type='CDF' construction='custom'>0.2 0.5 1.0</grid>

</variable>
</Stratified>
...

</Samplers>

For N-dimensional (ND) distributions, there are two different approahes to perform the strati-
fied sampling. In the first approach, the subgroups is determined by the joint CDF of given multi-
variate distributions. If this approach is used, the sampling is performed on a grid on a CDF, while
the user is required to specify the same CDF grid for all the dimensions of the ND distribution.
This is possible by defining a <globalGrid> node and associate such <globalGrid> to each
variable belonging to the ND distribution as follows.
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<Samplers>
...
<Stratified name='StratifiedName'>

<variable name='x0'>
<distribution

dim='1'>ND_InverseWeight_P</distribution>
<grid type='globalGrid'>name_grid1</grid>

</variable>
<variable name='y0,z0'>

<distribution
dim='2'>ND_InverseWeight_P</distribution>

<grid type='globalGrid'>name_grid1</grid>
</variable>
<globalGrid>

<grid name='name_grid1' type='CDF'
construction='custom'>0.1 1.0 0.2</grid>

</globalGrid>
</Stratified>
...

</Samplers>
...

The second approach is different than the first approach. Like in the Grid sampling, if the
covariance matrix is provided and the input parameters is assumed to have the multivariate normal
distribution, one can also use Stratified approach to sample the input parameters in the trans-
formed space (aka subspace, reduced space). This means one creates the grids of variables listed
by <latentVariables> in the transformed space. If this is the case, the user needs to pro-
vide additional information, i.e. the <transformation> under <MultivariateNormal>
of <Distributions> (more information can be found in Section 9.2). In addition, the node
<variablesTransformation> is also required for Stratified sampler. This node is used
to tranform the variables specified by <latentVariables> in the transformed space of input
into variables spefified by <manifestVariables> in the input space. The variables listed
in <latentVariables> should be predefined in <variable>, and the variables listed in
<manifestVariables> are used by the <Models>. In addition, <globalGrid> will be
not used for approach.

• <variablesTransformation>, optional field. this XML node accepts one attribute:

– distribution, required string attribute, the name for the distribution defined in the
XML node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.
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In addition, this XML node also accepts three childen nodes:

– <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

– <manifestVariables>, comma separated string, required field, user-defined man-
ifest variables that can be used by the model.

– <manifestVariablesIndex>, comma separated string, optional field, user-defined
manifest variables indices paired with <manifestVariables>. These indices in-
dicate the position of manifest variables associated with multivariate normal distribu-
tion defined in the XML node <Distributions>. The indices should be postive
integer. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

– <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

...
<Models>

...
<ExternalModel ModuleToLoad="lorentzAttractor_noK"

name="PythonModule" subType="">
<variables>sigma,rho,beta,x,y,z,time,z0,y0,z0</variables>

</ExternalModel>
...

</Models>

<Distributions>
...
<MultivariateNormal name='MVNDist' method='pca'>

<transformation>
<rank>3</rank>

</transformation>
<mu>0.0 1.0 2.0</mu>
<covariance type="abs">

1.0 0.6 -0.4
0.6 1.0 0.2
-0.4 0.2 0.8

</covariance>
</MultivariateNormal>
...

</Distributions>
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<Samplers>
...
<Stratified name='StratifiedName'>

<variable name='x0'>
<distribution dim='1'>MVNDist</distribution>
<grid type='CDF' construction='equal' steps='3'>0.1

0.9</grid>
</variable>
<variable name='y0'>

<distribution dim='2'>MVNDist</distribution>
<grid type='value' construction='equal'

steps='3'>0.1 0.9</grid>
</variable>
<variable name='z0'>

<distribution dim='3'>MVNDist</distribution>
<grid type='CDF' construction='equal' steps='3'>0.2

0.8</grid>
</variable>
<variablesTransformation model="PythonModule">

<latentVariables>x1,y1,z1</latentVariables>
<manifestVariables>x0,y0,z0</manifestVariables>
<method>pca</method>

</variablesTransformation>
</Stratified>
...

</Samplers>
...

10.1.6 Response Surface Design

The Response Surface Design, or Response Surface Modeling (RSM), approach is one of the most
common Design of Experiment (DOE) methodologies currently in use. It explores the relationships
between several explanatory variables and one or more response variables. The main idea of RSM
is to use a sequence of designed experiments to obtain an optimal response. RAVEN currently
employs two different algorithms that can be classified within this family of methods:

• Box-Behnken: This methodology aims to achieve the following goals:

– Each factor, or independent variable, is placed at one of three equally spaced values,
usually coded as -1, 0, +1. (At least three levels are needed for the following goal);
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– The design should be sufficient to fit a quadratic model, that is, one squared term per
factor and the products of any two factors;

– The ratio of the number of experimental points to the number of coefficients in the
quadratic model should be reasonable (in fact, their designs keep it in the range of 1.5
to 2.6);

– The estimation variance should more or less depend only on the distance from the
center (this is achieved exactly for the designs with 4 and 7 factors), and should not
vary too much inside the smallest (hyper)cube containing the experimental points.

Each design can be thought of as a combination of a two-level (full or fractional) factorial
design with an incomplete block design. In each block, a certain number of factors are
put through all combinations for the factorial design, while the other factors are kept at the
central values.

• Central Composite: This design consists of three distinct sets of experimental runs:

– A factorial (perhaps fractional) design in the factors are studied, each having two levels;

– A set of center points, experimental runs whose values of each factor are the medians
of the values used in the factorial portion. This point is often replicated in order to
improve the precision of the experiment;

– A set of axial points, experimental runs identical to the centre points except for one
factor, which will take on values both below and above the median of the two factorial
levels, and typically both outside their range. All factors are varied in this way.

This methodology is useful for building a second order (quadratic) model for the response
variable without needing to use a complete three-level factorial experiment.

All the parameters, needed for setting up the algorithms reported above, must be defined within a
<ResponseSurfaceDesign> block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <ResponseSurfaceDesign> input block, the user needs to specify the variables
to sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.
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– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

* type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.

* construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change. In this case, only the following is available:

* construction=’custom’. The grid will be directly specified by the user.
This construction type requires that the <grid> node contains the actual mesh
bins. For example, if the grid type is ’CDF’, in the body of <grid>, the user
will specify the CDF probability thresholds (nodalization in probability). All the
bins are checked against the associated <distribution> bounds. If one or
more of them falls outside the distribution’s bounds, the code will raise an error.
No additional attributes are needed.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested. Note: Only
the construction “custom” is available. In the <grid> body only the lower and upper
bounds can be inputted (2 numbers only).

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
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There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

• <ResponseSurfaceDesignSettings>, required, In this sub-node, the user needs to
specify different settings depending on the algorithm being used:

– <algorithmType>, string, required field, this XML node will contain the name
of the algorithm to be used. Based on the chosen algorithm, other nodes need to be
defined:
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* <algorithmType>BoxBehnken<algorithmType/>. If Box-Behnken is
specified, the following additional node is recognized:

· <ncenters>, integer, optional field, the number of center points to include
in the box. If this parameter is not specified, then a pre-determined number of
points are automatically included.
Default: Automatic Generation.

Note: In order to employ the “Box-Behnken” design, at least 3 variables must be
used.

* <algorithmType>CentralComposite<algorithmType/>. If Central
Composite is specified, the following additional nodes will be recognized:

· <centers>, comma separated integers, optional field, the number of center
points to be included. This block needs to contain 2 integers values separated
by a comma. The first entry represents the number of centers to be added for
the factorial block; the second one is the one for the star block.
Default: 4,4.

· <alpha>, string, optional field, in this node, the user decides how an α factor
needs to be determined. Two options are available:
orthogonal for orthogonal design.
rotatable for rotatable design.

Default: orthogonal.
· <face>, string, optional field, in this node, the user defines how faces should

be constructed. Three options are available:
circumscribed for circumscribed facing
inscribed for inscribed facing
faced for faced facing.

Default: circumscribed.
Note: In order to employ the “Central Composite” design, at least 2 variables must be
used.

Furthermore, if the covariance matrix is provided and the input parameters are assumed to have
a multivariate normal distribution, one can use ResponseSurfaceDesign approach to sample the in-
put parameters in the transformed space (aka subspace, reduced space). In this case, the user needs
to provide additional information, i.e. the <transformation> under <MultivariateNormal>
of <Distributions> (more information can be found in Section 9.2). In addition, the node
<variablesTransformation> is also required for ResponseSurfaceDesign sampling. This
node is used to tranform the variables specified by <latentVariables> in the transformed
space of input into variables spefified by <manifestVariables> in the input space. The vari-
ables listed in <latentVariables> should be predefined in <variable>, and the variables
listed in <manifestVariables> are used by the <Models>.
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• <variablesTransformation>, optional field. this XML node accepts one attribute:

– distribution, required string attribute, the name for the distribution defined in the
XML node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.

In addition, this XML node also accepts three childen nodes:

– <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

– <manifestVariables>, comma separated string, required field, user-defined man-
ifest variables that can be used by the model.

– <manifestVariablesIndex>, comma separated string, optional field, user-defined
manifest variables indices paired with <manifestVariables>. These indices in-
dicate the position of manifest variables associated with multivariate normal distribu-
tion defined in the XML node <Distributions>. The indices should be postive
integer. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

– <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

Example:

<Samplers>
...

<ResponseSurfaceDesign name='BoxBehnkenRespDesign'>
<ResponseSurfaceDesignSettings>

<algorithmType>BoxBehnken</algorithmType>
<ncenters>1</ncenters>

</ResponseSurfaceDesignSettings>
<variable name='var1' >

<distribution >Gauss1</distribution>
<grid type='CDF' construction='custom' >0.2

0.8</grid>
</variable>
<!-- N.B. at least 3 variables need to inputted

in order to employ this algorithm
-->

</ResponseSurfaceDesign>
<ResponseSurfaceDesign name='CentralCompositeRespDesign'>

<ResponseSurfaceDesignSettings>
<algorithmType>CentralComposite</algorithmType>
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<centers>1, 2</centers>
<alpha>orthogonal</alpha>
<face>circumscribed</face>

</ResponseSurfaceDesignSettings>
<variable name='var4' >

<distribution >Gauss1</distribution>
<grid type='CDF' construction='custom' >0.2

0.8</grid>
</variable>
<!-- N.B. at least 2 variables need to inputted

in order to employ this algorithm
-->

</ResponseSurfaceDesign>
<ResponseSurfaceDesign name='transformedSpaceSampling'>

<ResponseSurfaceDesignSettings>
<algorithmType>BoxBehnken</algorithmType>
<ncenters>1</ncenters>

</ResponseSurfaceDesignSettings>
<variable name='var1' >

<distribution >Gauss1</distribution>
<grid type='CDF' construction='custom' >0.2

0.8</grid>
</variable>
...
<variablesTransformation model="givenModel">

<latentVariables>var1,...</latentVariables>
<manifestVariables>...</manifestVariables>
<method>pca</method>

</variablesTransformation>
</ResponseSurfaceDesign>

...
</Samplers>

10.1.7 Factorial Design

The Factorial Design method is an important method to determine the effects of multiple vari-
ables on a response. A factorial design can reduce the number of samples one has to perform by
studying multiple factors simultaneously. Additionally, it can be used to find both main effects
(from each independent factor) and interaction effects (when both factors must be used to explain
the outcome). A factorial design tests all possible conditions. Because factorial designs can lead to
a large number of trials, which can become expensive and time-consuming, they are best used for
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small numbers of variables with only a few domain discretizations (1 to 3). Factorial designs work
well when interactions between variables are strong and important and where every variable con-
tributes significantly. RAVEN currently employs three different algorithms that can be classified
within this family of techniques:

• General Full Factorial explores the input space by investigating all possible combinations
of a set of factors (variables).

• 2-Level Fractional-Factorial consists of a carefully chosen subset (fraction) of the exper-
imental runs of a full factorial design. The subset is chosen so as to exploit the sparsity-
of-effects principle exposing information about the most important features of the problem
studied, while using a fraction of the effort of a full factorial design in terms of experimental
runs and resources.

• Plackett-Burman identifies the most important factors early in the experimentation phase
when complete knowledge about the system is usually unavailable. It is an efficient screening
method for identifying the active factors (variables) using as few samples as possible. In
Plackett-Burman designs, main effects have a complicated confounding relationship with
two-factor interactions. Therefore, these designs should be used to study main effects when
it can be assumed that two-way interactions are negligible.

All the parameters needed for setting up the algorithms reported above must be defined within a
<FactorialDesign> block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <FactorialDesign> input block, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:
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– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

* type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.

* construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

* construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

· steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lowerBound, the largest,
the upperBound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upperBound− lowerBound)/steps

* construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ’CDF’, in the
body of <grid>, the user will specify the CDF probability thresholds (nodaliza-
tion in probability). All the bins are checked against the associated <distribution>
bounds. If one or more of them falls outside the distribution’s bounds, the code
will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.
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• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

The main <FactorialDesign> block needs to contain an additional sub-node called
<FactorialSettings>. In this sub-node, the user needs to specify different settings depend-
ing on the algorithm being used:
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• <algorithmType>, string, required field, specifies the algorithm to be used. Based on
the chosen algorithm, other nodes may be defined:

– <algorithmType>full<algorithmType/>. Full factorial design. If full is
specified, no additional nodes are necessary.
Note: The full factorial design does not have any limitations on the number of dis-

cretization bins that can be used in the <grid> XML node for each <variable>
specified.

– <algorithmType>2levelFract<algorithmType/>. Two-level Fractional-
Factorial design. If
2levelFract is specified, the following additional nodes must be specified:

* <gen>, space separated strings, required field, specifies the confounding map-
ping. For instance, in this block the user defines the decisions on a fraction of the
full-factorial by allowing some of the factor main effects to be compounded with
other factor interaction effects. This is done by defining an alias structure that de-
fines, symbolically, these interactions. These alias structures are written like “C =
AB” or “I = ABC”, or “AB = CD”, etc. These define how a column is related to
the others.

* <genMap>, space separated strings, required field, defines the mapping be-
tween the <gen> symbolic aliases and the variables that have been inputted in
the <FactorialDesign> main block.

Note: The Two-levels Fractional-Factorial design is limited to 2 discretization bins in
the <grid> node for each <variable>.

– <algorithmType>pb<algorithmType/>. Plackett-Burman design. If pb is
specified, no additional nodes are necessary.
Note: The Plackett-Burman design does not have any limitations on the number of

discretization bins allowed in the <grid> node for each <variable>.

Example:

<Samplers>
...
<FactorialDesign name='fullFactorial'>

<FactorialSettings>
<algorithmType>full</algorithmType>

</FactorialSettings>
<variable name='var1' >

<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>
<grid type='value' construction='custom' >0.02 0.03

0.5</grid>
</variable>
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<variable name='var2' >
<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
<grid type='CDF' construction='custom'>0.5 0.7 1.0</grid>

</variable>
</FactorialDesign>
<FactorialDesign name='2levelFractFactorial'>

<FactorialSettings>
<algorithmType>2levelFract</algorithmType>
<gen>a,b,ab</gen>
<genMap>var1,var2,var3</genMap>

</FactorialSettings>
<variable name='var1' >

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type='value' construction='custom' >0.02 0.5</grid>

</variable>
<variable name='var2' >

<distribution>aDistributionNameDefinedInDistributionBlock
</distribution>
<grid type='CDF' construction='custom'>0.5 1.0</grid>

</variable>
<variable name='var3'>

<distribution>aDistributionNameDefinedInDistributionBlock5
</distribution>
<grid type='value' upperBound='4' construction='equal'

steps='1'>0.5</grid>
</variable>

</FactorialDesign>
<FactorialDesign name='pbFactorial'>

<FactorialSettings>
<algorithmType>pb</algorithmType>

</FactorialSettings>
<variable name='var1' >

<distribution>aDistributionNameDefinedInDistributionBlock6
</distribution>
<grid type='value' construction='custom' >0.02 0.5</grid>

</variable>
<variable name='VarGauss2' >

<distribution>aDistributionNameDefinedInDistributionBlock7
</distribution>
<grid type='CDF' construction='custom'>0.5 1.0</grid>
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</variable>
</FactorialDesign>
...

</Samplers>

10.1.8 Ensemble Forward Sampling strategy

The Ensemble Forward sampling approach allows the user to combine multiple Forward sampling
strategies into one single strategy. For example, it can happen that a variable is more suitable for
a particular sampling strategy (e.g. a stochastic event modeled with a Monte Carlo approach) and
a second variable is more suitable for another sampling method (e.g. because part of a parametric
space modeled with a Grid-based approach). The specifications of this sampler must be defined
within a <EnsembleForward> XML block. This XML node accepts the following attributes:

• name, required string attribute, user-defined name of this Sampler. N.B. As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks (xml);

In the EnsembleForward input block, the user needs to specify the sampling strategies that he
wants to combine together.
Currently, only the following strategies can be combined:

• <MonteCarlo>

• <Grid>

• <Stratiefied>

• <FactorialDesign>

• <ResponseSurfaceDesign>

• <CustomSampler>

For each of the above samplers, the input specifications can be found in the relative sections.

Example:

<Samplers>
...

<EnsembleForward name="testEnsembleForward">
<MonteCarlo name = "theMC">

<samplerInit> <limit>4</limit> </samplerInit>
<variable name="sigma">
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<distribution>norm</distribution>
</variable>

</MonteCarlo>
<Grid name = "theGrid">

<variable name="x0">
<distribution>unif</distribution>
<grid construction="custom" type="value">0.02

0.5 0.6</grid>
</variable>

</Grid>
<Stratified name = "theStratified">

<variable name="z0">
<distribution>tri</distribution>
<grid construction="equal" steps="2"

type="CDF">0.2 0.8</grid>
</variable>
<variable name="y0">

<distribution>unif</distribution>
<grid construction="equal" steps="2"

type="value">0.5 0.8</grid>
</variable>

</Stratified>
<ResponseSurfaceDesign name = "theRSD">

<ResponseSurfaceDesignSettings>
<algorithmType>CentralComposite</algorithmType>
<centers>1,2</centers>
<alpha>orthogonal</alpha>
<face>circumscribed</face>

</ResponseSurfaceDesignSettings>
<variable name="rho">

<distribution>unif</distribution>
<grid construction="custom" type="CDF">0.0

1.0</grid>
</variable>
<variable name="beta">

<distribution>tri</distribution>
<grid construction="custom" type="value">0.1

1.5</grid>
</variable>

</ResponseSurfaceDesign>
</EnsembleForward>

...
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</Samplers>

Care should be used when using deterministic random seeds for EnsembleForward sampling.
The EnsembleForward sample will ignore any seeds set in any of its subset samplers; however, the
global random seed can be set by adding a <samplerInit> block with the <initialSeed>
block therein, with an integer value providing the seed. For example,

<Samplers>
...
<EnsembleForward name='testEnsembleForward'>

<samplerInit>
<initialSeed>42</initialSeed>

</samplerInit>
...
</EnsembleForward>
...

</Samplers>

Because RAVEN has a single global random number generator, this will set the seed for the full
calculation when the Step containing a run using this ForwardSampler is begun.

Note also variables that are defined from functions, as well as constants, need to be defined
outside the samplers of the ensemble sampler. An example is shown below.

Example:

<Samplers>
<EnsembleForward name='testEnsembleForward'>

<variable name='x3'>
<function>funct1</function>

</variable>
<variable name='x4,x5'>

<function>funct2</function>
</variable>
<constant name='pi'>3.14159</constant>
<MonteCarlo name='notNeeded'>
<samplerInit>

<limit>3</limit>
</samplerInit>
<variable name='x1'>

<distribution>norm</distribution>
</variable>

</MonteCarlo>
<Grid name='notNeeded'>
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<variable name='x2'>
<distribution>unif</distribution>
<grid construction='custom' type='value'>0.02

0.6</grid>
</variable>

</Grid>
</EnsembleForward>

</Samplers>

In this example note that:

• variables x1 and x2 are generated by the two samplers (Monte-Carlo and Grid respectively)

• variable x3 is generated from the function funct1

• variables x4 and x5 are generated from the function funct2

• variables x3, x4 and x5 are defined outside the Monte-Carlo and Grid

10.1.9 Custom Sampling strategy

The Custom sampling approach allows the user to specify a predefined set of coordinates (in the
input space) that RAVEN should use to inquire the model. For example, the user can provide a CSV
file containing a list of samples that RAVEN should use. The specifications of this sampler must
be defined within a <CustomSampler> XML block. This XML node accepts the following
attributes:

• name, required string attribute, user-defined name of this Sampler. N.B. As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks (xml);

In the CustomSampler input block, the user needs to specify the variables need to be sam-
pled. As already mentioned, these variables are inputted within consecutive XML blocks called
<variable>. Note that if any variables are dependent on other dimensions (e.g. “time”), the
dependent dimensions need to be listed as variables as well.

In addition, the <Source> from which the samples need to be retrieved needs to be specified:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– nameInSource, optional string attribute, name of the variable to read from in <Source>.

Default: Same as name.
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– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

• <Source>, XML node, required parameter will specify the following attributes:

– class, required string attribute, class entity of the source where the samples need to
be retrieved from. It can be either Files or DataObjects.

– type, required string attribute, type of the source withing the previously explained
“class”. If class is Files, this attribute needs to be kept empty; otherwise it must be
one of the DataSet objects: PointSet, HistorySet, or DataSet.
Note: If the <Source> class is Files, the File needs to be a standard CSV file,

specified in the <Files> XML block in the RAVEN input.
In addition, it is important to notice that if in the <Source> the PointProbability and
ProbabilityWeight quantities are not found, the samples are assumed to come from a
MonteCarlo (from a statistical post-processing prospective).

• <index>, comma-separated integer, optional parameter indexes to use from the <Source>.
If provided, then only the listed indexes will be used. Indexes are zero-based; that is, the first
realization is indexed at 0, the second at 1, and so forth. Default is for all indices in the
source to be used.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:
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– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

Example:

Table 1: samples.csv

y x z PointProbability ProbabilityWeight
0.725675246 0.031099304 0.984988317 0.1 0.2
0.565949127 0.028589754 1.13186372 0.1 0.2
0.72567754 0.031099304 0.967209238 0.1 0.2

0.565951633 0.028589754 1.111431662 0.1 0.2
0.725968307 0.031100307 0.98498835 0.1 0.2

<Samplers>
...
<Samplers>

<CustomSampler name="customSamplerDataObject">
<Source class="DataObjects"

type="PointSet">outCustomSamplerFromFile</Source>
<variable name="x"/>
<variable name="y"/>
<variable name="z"/>
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</CustomSampler>
</Samplers>
<Samplers>

<CustomSampler name="customSamplerFile">
<Source class="Files" type="">samples.csv</Source>
<variable name="x"/>
<variable name="y"/>
<variable name="z"/>

</CustomSampler>
</Samplers>
...

</Samplers>

10.2 Dynamic Event Tree (DET) Samplers

The Dynamic Event Tree methodologies are designed to take the timing of events explicitly into
account, which can become very important especially when uncertainties in complex phenomena
are considered. Hence, the main idea of this methodology is to let a system code determine the
pathway of an accident scenario within a probabilistic environment. In this family of methods, a
continuous monitoring of the system evolution in the phase space is needed. In order to use the
DET-based methods, the generic driven code needs to have, at least, an internal trigger system
and, consequently, a “restart” capability. In the RAVEN framework, 4 different DET samplers are
available:

• Dynamic Event Tree (DET)

• Hybrid Dynamic Event Tree (HDET)

• Adaptive Dynamic Event Tree (ADET)

• Adaptive Hybrid Dynamic Event Tree (AHDET)

The ADET and the AHDET methodologies represent a hybrid between the DET/HDET and
adaptive sampling approaches. For this reason, its input requirements are reported in the Adaptive
Samplers’ section (10.3).

10.2.1 Dynamic Event Tree

The Dynamic Event Tree sampling approach is a sampling strategy that is designed to take the
timing of events, in transient/accident scenarios, explicitly into account. From an application point
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of view, an N -Dimensional grid is built on the CDF space. A single simulation is spawned and a
set of triggers is added to the system code control logic. Every time a trigger is activated (one of
the CDF thresholds in the grid is exceeded), a new set of simulations (branches) is spawned. Each
branch carries its conditional probability. In the RAVEN code, the triggers are defined by specify-
ing a grid using a predefined discretization metric in the mode input space. RAVEN provides two
discretization metrics: 1) CDF, and 2) value. Thus, the trigger thresholds can be entered either in
probability or value space.

The specifications of this sampler must be defined within a <DynamicEventTree> XML
block. This XML node accepts the following attributes:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• printEndXmlSummary, optional string/boolean attribute, controls the dumping of a
“summary” of the DET performed into an external XML.
Default: False.

• maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

In the <DynamicEventTree> input block, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.
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– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

* type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.

* construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

* construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

· steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lowerBound, the largest,
the upperBound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upperBound− lowerBound)/steps

* construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ’CDF’, in the
body of <grid>, the user will specify the CDF probability thresholds (nodaliza-
tion in probability). All the bins are checked against the associated <distribution>
bounds. If one or more of them falls outside the distribution’s bounds, the code
will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.
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– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

Example:

<Samplers>
...
<DynamicEventTree name='DETname'>

<variable name='var1'>
<distribution>aDistributionNameDefinedInDistributionBlock1

</distribution>
<grid type='value' construction='equal' steps='100' >1.0

201.0</grid>
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</variable>
<variable name='var2'>

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>

<grid type='CDF' construction='equal' steps='5'>0 1</grid>
</variable>
<variable name='var3'>

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>

<grid type='value' construction='equal' steps='10' >11.0
21.0</grid>

</variable>
<variable name='var4'>

<distribution>aDistributionNameDefinedInDistributionBlock4
</distribution>

<grid type='CDF' construction='equal' steps='5' >0.0
1.0</grid>

</variable>
<variable name='var5'>

<distribution>aDistributionNameDefinedInDistributionBlock5
</distribution>

<grid type='value' construction='custom'>0.2 0.5
10.0</grid>

</variable>
<variable name='var6'>

<distribution>aDistributionNameDefinedInDistributionBlock6
</distribution>

<grid type='CDF' construction='custom'>0.2 0.5 1.0</grid>
</variable>

</DynamicEventTree>
...

</Samplers>

10.2.2 Hybrid Dynamic Event Tree

The Hybrid Dynamic Event Tree sampling approach is a sampling strategy that represents an evo-
lution of the Dynamic Event Tree method for the simultaneous exploration of the epistemic and
aleatory uncertain space. In similar approaches, the uncertainties are generally treated by employ-
ing a Monte-Carlo sampling approach (epistemic) and DET methodology (aleatory). The HDET
methodology, developed within the RAVEN code, can reproduce the capabilities employed by this
approach, but provides additional sampling strategies to the user. The epistemic or epistemic-like
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uncertainties can be sampled through the following strategies:

• Monte-Carlo;

• Grid sampling;

• Stratified (e.g., Latin Hyper Cube).

From a practical point of view, the user defines the parameters that need to be sampled by
one or more different approaches. The HDET module samples those parameters creating an N -
dimensional grid characterized by all the possible combinations of the input space coordinates
coming from the different sampling strategies. Each coordinate in the input space represents a
separate and parallel standard DET exploration of the uncertain domain. The HDET methodology
allows the user to explore the uncertain domain employing the best approach for each variable
kind. The addition of a grid sampling strategy among the usable approaches allows the user to
perform a discrete parametric study under aleatory and epistemic uncertainties.

Regarding the input requirements, the HDET sampler is a “sub-type” of the
<DynamicEventTree> sampler. For this reason, its specifications must be defined within a
<DynamicEventTree> block. This XML node accepts the following attributes:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• printEndXmlSummary, optional string/boolean attribute, controls the dumping of a
“summary” of the DET performed into an external XML.
Default: False.

• maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

In the <DynamicEventTree> input block, the user needs to specify the variables to sam-
ple. As already mentioned, these variables are specified within consecutive <variable> XML
blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.
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– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

* type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.

* construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

* construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

· steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lowerBound, the largest,
the upperBound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upperBound− lowerBound)/steps

* construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
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node contains the actual mesh bins. For example, if the grid type is ’CDF’, in the
body of <grid>, the user will specify the CDF probability thresholds (nodaliza-
tion in probability). All the bins are checked against the associated <distribution>
bounds. If one or more of them falls outside the distribution’s bounds, the code
will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
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<constant name='C' source='MyConstants'
index='3'>A</constant>

</WhatEverSampler>
</Samplers>

In order to activate the Hybrid Dynamic Event Tree sampler, the main <DynamicEventTree>
block needs to contain, at least, an additional sub-node called <HybridSampler>. As already
mentioned, the user can combine the Monte-Carlo, Stratified, and Grid approaches in order to cre-
ate a “pre-sampling” N -dimensional grid, from whose nodes a standard DET method is employed.
For this reason, the user can specify a maximum of three <HybridSampler> sub-nodes (i.e.
one for each of the available Forward samplers). This sub-node needs to contain the following
attribute:

• type, required string attribute, type of pre-sampling strategy to be used. Available options
are ’MonteCarlo’, ’Grid’, and ’Stratified’.

Independent of the type of “pre-sampler” that has been specified, the <HybridSampler>
must contain the variables that need to be sampled. As already mentioned, these variables are
specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.
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• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

If a pre-sampling strategy type is either ’Grid’ or ’Stratified’, within the <variable>
blocks, the user needs to specify the sub-node <grid>. As with the standard DET, the content of
this XML node depends on the definition of the associated attributes:
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• type, required string attribute, user-defined discretization metric type:

– ’CDF’, the grid is going to be specified based on the cumulative distribution function
probability thresholds

– ’value’, the grid is going to be provided using variable values.

• construction, required string attribute, how the grid needs to be constructed, indepen-
dent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the requirements
for other attributes change:

• construction=’equal’. The grid is going to be constructed equally-spaced (type=’value’)
or equally probable (type=’CDF’). This construction type requires the definition of addi-
tional attributes:

– steps, required integer attribute, number of equally spaced/probable discretization
steps.

This construction type requires that the content of the <grid> node represents the lower and
upper bounds (either in probability or value). Two values need to be specified; the lowest one
will be considered as the lowerBound, the largest, the upperBound. The lower and upper
bounds are checked against the associated <distribution> bounds. If one or both of
them falls outside the distribution’s bounds, the code will raise an error. The stepSize is
determined as follows:
stepSize = (upperBound− lowerBound)/steps

• construction=’custom’. The grid will be directly specified by the user. No addi-
tional attributes are needed. This construction type requires that the <grid> node contains
the actual mesh bins. For example, if the grid type is ’CDF’, in the body of <grid>, the
user will specify the CDF probability thresholds (nodalization in probability). All the bins
are checked against the associated <distribution> bounds. If one or more of them falls
outside the distribution’s bounds, the code will raise an error.

Example:

<Samplers>
...
<DynamicEventTree name='HybridDETname' print_end_XML="True">

<HybridSampler type='MonteCarlo' limit='2'>
<variable name='var1' >
<distribution>aDistributionNameDefinedInDistributionBlock1

</distribution>
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</variable>
<variable name='var2' >
<distribution>aDistributionNameDefinedInDistributionBlock2

</distribution>
<grid type='CDF' construction='equal' steps='1'

lowerBound='0.1'>0.1</grid>
</variable>

</HybridSampler>
<HybridSampler type='Grid'>

<!-- Point sampler way (directly sampling the variable) -->
<variable name='var3' >
<distribution>aDistributionNameDefinedInDistributionBlock3

</distribution>
<grid type='CDF' construction='equal' steps='1'

lowerBound='0.1'>0.1</grid>
</variable>
<variable name='var4' >
<distribution>aDistributionNameDefinedInDistributionBlock4

</distribution>
<grid type='CDF' construction='equal' steps='1'

lowerBound='0.1'>0.1</grid>
</variable>

</HybridSampler>
<HybridSampler type='Stratified'>

<!-- Point sampler way (directly sampling the variable )
-->

<variable name='var5' >
<distribution>aDistributionNameDefinedInDistributionBlock5

</distribution>
<grid type='CDF' construction='equal' steps='1'

lowerBound='0.1'>0.1</grid>
</variable>
<variable name='var6' >
<distribution>aDistributionNameDefinedInDistributionBlock6

</distribution>
<grid type='CDF' construction='equal' steps='1'

lowerBound='0.1'>0.1</grid>
</variable>

</HybridSampler>
<!-- DYNAMIC EVENT TREE INPUT (it goes outside an inner

block like HybridSamplerSettings) -->
<Distribution name='dist7'>
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<distribution>aDistributionNameDefinedInDistributionBlock7
</distribution>

<grid type='CDF' construction='custom'>0.1 0.8</grid>
</Distribution>

</DynamicEventTree>
...

</Samplers>

10.3 Adaptive Samplers

The Adaptive Samplers’ family provides the possibility to perform smart sampling (also known
as adaptive sampling) as an alternative to classical “Forward” techniques. The motivation is that
system simulations are often computationally expensive, time-consuming, and high dimensional
with respect to the number of input parameters. Thus, exploring the space of all possible simulation
outcomes is infeasible using finite computing resources. During simulation-based probabilistic risk
analysis, it is important to discover the relationship between a potentially large number of input
parameters and the output of a simulation using as few simulation trials as possible.

The description above characterizes a typical context for performing adaptive sampling where
a few observations are obtained from the simulation, a reduced order model (ROM) is built to
represent the simulation space, and new samples are selected based on the model constructed.
The reduced order model (see section 15.3) is then updated based on the simulation results of
the sampled points. In this way, an attempt is made to gain the most information possible with a
small number of carefully selected sample points, limiting the number of expensive trials needed
to understand features of the system space.

Currently, RAVEN provides support for the following adaptive algorithms:

• Limit Surface Search

• Adaptive Monte Carlo

• Adaptive Dynamic Event Tree

• Adaptive Hybrid Dynamic Event Tree

• Adaptive Sparse Grid

• Adaptive Sobol Decomposition

In the following paragraphs, the input requirements and a small explanation of the different
sampling methods are reported.
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10.3.1 Limit Surface Search

The Limit Surface Search approach is an advanced methodology that employs a smart sampling
around transition zones that determine a change in the status of the system (limit surface). To
perform such sampling, RAVEN uses ROMs for predicting, in the input space, the location(s) of
these transitions, in order to accelerate the exploration of the input space in proximity of the limit
surface.

The specifications of this sampler must be defined within an <LimitSurfaceSearch>
XML block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <LimitSurfaceSearch> input block, the user needs to specify the variables to
sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

In addition to the <variable> nodes, the main XML node <Adaptive> needs to contain
two supplementary sub-nodes:

• <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the definition of other attributes that might be defined in this XML node:

– limit, optional integer attribute, the maximum number of adaptive samples (itera-
tions).
Default: infinite.
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– forceIteration, optional boolean attribute, this attribute controls if at least a
number of iterations equal to limit must be performed.
Default: False.

– weight, optional string attribute (case insensitive), defines on what the convergence
check needs to be performed.

* ’CDF’, the convergence is checked in terms of probability (Cumulative Distri-
bution Function). From a practical point of view, this means that full uncertain
domain is discretized in a way that the probability volume of each cell is going to
be equal to the tolerance specified in the body of the node <Convergence>

* ’value’, the convergence is checked on the hyper-volume in terms of variable
values.From a practical point of view, this means that full uncertain domain is
discretized in a way that the “volume” fraction of each cell is going to be equal to
the tolerance specified in the body of the node <Convergence>. In other words,
each cell volume is going to be equal to the total volume times the tolerance.

Default: CDF.

– persistence, optional integer attribute, offers an additional convergence check.
It represents the number of times the computed error needs to be below the inputted
tolerance before convergence is reported.
Default: 5.

– subGridTol, optional float attribute, this attribute is used to activate the multi-grid
approach (adaptive meshing) of the constructed evaluation grid (see attribute weight).
In case this attribute is specified, the final grid discretization (cell’s “volume content”
aka convergence confidence) is represented by the value here specified. The sampler
converges on the initial coarse grid, defined by the tolerance specified in the body of
the node <Convergence>. When the Limit Surface has been identified on the coarse
grid, the sampler starts refining the grid until the “volume content” of each cell is equal
to the value specified in this attribute (Multi-grid approach).
Default: None.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

• <batchStrategy>, string, optional field, defines how points should be selected within a
batch of size n where n is given by the <maxBatchSize> parameter below. Four options
are available:

– ’none’ If this is specified then the <maxBatchSize> parameter below will be
ignored and the functionality will replicate the LimitSurfaceSearch, in that the limit
surface will be rebuilt and the points will be re-scored after each trial is completed.

– ’naive’ The top n candidates will be queued for adaptive sampling before retraining
the limit surface and re-scoring the new candidate set.
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– ’maxP’ The topology of the limit surface given the scoring function values will be
decomposed and the top n highest topologically persistent features (local maxima) will
be queued for adaptive sampling before retraining and re-scoring the new candidate set.

– ’maxV’ The topology of the limit surface given the scoring function values will be
decomposed and the top n highest topological features (local maxima) will be queued
for adaptive sampling before retraining and re-scoring the new candidate set.

Default: none.

• <maxBatchSize>, integer, optional field, specifies the number of points to select for
adaptive sampling before retraining the limit surface and re-scoring the candidates. This is
the equivalent of the n parameter used in the <batchStrategy> description.
Default: 1.

• <scoring>, string, optional field, defines the scoring function to use on the candidate
limit surface points in order to select the next adaptive point. Two options are available:

– ’distance’will scoring the candidate points by their distance to the closest realized
point, in this way preference is given to unexplored regions of the limit surface.

– ’distancePersistence’ augments the distance above by multiplying it with the
inverse persistence of a candidate point which measures how many times the label of
the candidate point has changed throughout the lifespan of the algorithm.

Default: distancePersistence.

• <simplification>, float in the range [0,1], optional field, specifies the percent of the
scoring function range (on the candidate set) as the amount of topological simplification to
do before extracting the topological features from the candidate set (local maxima). This
only applies when the <batchStrategy> is set to ’maxP’ or ’maxV’. Thus, one may
end up with a batch size less than that specified by <maxBatchSize>.
Default: 0.

• <thickness>, positive integer, optional field, specifies how much the limit surface should
be expanded (in terms of grid distance) when constructing a candidate set. A value of 1
implies only the points bounding the limit surface.
Default: 1.

• <threshold>, float in the range [0,1], optional field, once the candidates have been
ranked and selected, before queueing them for adaptive sampling, this value is used to
threshold any points whose score is less than this percentage of the scoring function range
(on the candidate set). Thus, one may end up with a batch size less than that specified by
<maxBatchSize>.
Default: 0
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• Assembler Objects These objects are either required or optional depending on the function-
ality of the LimitSurfaceSearch Sampler. The objects must be listed with a rigorous syntax
that, except for the XML node tag, is common among all the objects. Each of these nodes
must contain 2 attributes that are used to identify them within the simulation framework:

– class, required string attribute, the main “class” of the listed object. For example, it
can be ’Models’, ’Functions’, etc.

– type, required string attribute, the object identifier or sub-type. For example, it can
be ’ROM’, ’External’, etc.

The LimitSurfaceSearch approach requires or optionally accepts the following object types:

– <Function>, string, required field, the body of this XML block needs to contain
the name of an external function object defined within the <Functions> main block
(see Section 16). This object represents the boolean function that defines the transition
boundaries. This function must implement a method called residuumSign(self),
that returns either -1 or 1, depending on the system conditions (see Section 16.

– <ROM>, , string, optional field, if used, the body of this XML node must contain the
name of a ROM defined in the <Models> block (see Section 15.3). The ROM here
specified is going to be used as “acceleration model” to speed up the convergence of
the sampling strategy. The <Target> XML node in the ROM input block (within
the <Models> section) needs to match the name of the goal <Function> (e.g. if
the goal function is named “transitionIdentifier”, the <Target> of the ROM needs to
report the same name: <Target>transitionIdentifier<Target>).

– <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObjects> block (see Section 12).
The object here specified must be input as <Output> in the Steps that employ this
sampling strategy. The Limit Surface Search sampling accepts “DataObjects” of type
“PointSet” only.

Example:

<Samplers>
...
<LimitSurfaceSearch name='LSSName'>

<ROM class='Models' type='ROM'>ROMname</ROM>
<Function class='Functions' type='External'

>FunctionName</Function>
<TargetEvaluation class='DataObjects'

type='PointSet'>DataName</TargetEvaluation>
<Convergence limit='3000' forceIteration='False'

weight='CDF' subGridTol='1e-4' persistence='5'>
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1e-2
</Convergence>
<variable name='var1'>

<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>

</variable>
<variable name='var2'>

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>

</variable>
<variable name='var3'>

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>

</variable>
</LimitSurfaceSearch>
...

</Samplers>

Batch sampling Example:

<Samplers>
...
<LimitSurfaceSearch name='LSBSName'>

<ROM class='Models' type='ROM'>ROMname</ROM>
<Function class='Functions' type='External'

>FunctionName</Function>
<TargetEvaluation class='DataObjects'

type='PointSet'>DataName</TargetEvaluation>
<Convergence limit='3000' forceIteration='False'

weight='CDF' subGridTol='1e-4' persistence='5'>
1e-2

</Convergence>
<scoring>distancePersistence</scoring>
<batchStrategy>maxP</batchStrategy>
<thickness>1</thickness>
<maxBatchSize>4</maxBatchSize>
<variable name='var1'>

<distribution>aDistributionNameDefinedInDistributionBlock1
</distribution>

</variable>
<variable name='var2'>

<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
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</variable>
<variable name='var3'>

<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>

</variable>
</LimitSurfaceSearch>
...

</Samplers>

Associated External Python Module:

def __residuumSign(self):
if self.whatEverValue < self.OtherValue :

return 1
else:

return -1

10.3.2 Adaptive Monte Carlo

The <AdaptiveMonteCarlo> approach is an extension of the <MonteCarlo> sampler.
However, instead of having a predefined number of samples, the <AdaptiveMonteCarlo>
sampler continues sampling until the standard error of all the desired metrics are less than the
specified tolerance.

The specifications of this sampler must be defined within an <AdaptiveMonteCarlo>
XML block.

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <AdaptiveMonteCarlo> input block, the user needs to specify the variables to
sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
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matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry
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By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

In addition to the <variable> nodes, the main <AdaptiveMonteCarlo> node needs to
contain the following supplementary sub-nodes:

• <Convergence> recognizes the following child nodes:

– <limit>, integer required field, the maximum number of adaptive samples (itera-
tions).
Default: infinite.

– <forceIteration>, boolean optional field, this attribute controls if at least a num-
ber of iterations equal to limit must be performed.
Default: False.

– <persistence>, integer optional field, offers an additional convergence check. It
represents the number of times the computed error needs to be below the inputted
tolerance before convergence is reported.
Default: 5.

– <"metric">, comma separated string list, required field, specifications for the ag-
gregate metrics on which <AdaptiveMonteCarlo> will attempt to converge. The
name of each node is the requested metric. The text of the node is a comma-separated
list of the parameters for which the metric should be calculated. See the example below.

<AdaptiveMonteCarlo> will attempt to converge the standard errors of the re-
quested metrics. Currently the metrics available are:

* expectedValue: expected value or mean

* median: median

* variance: variance
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* sigma: standard deviation

* skewness: skewness

* kurtosis: excess kurtosis (also known as Fisher’s kurtosis)

The nodes containing metrics need to contain the following attributes:

* prefix, required string attribute, user-defined prefix for the given metric. For
scalar quantifies, RAVEN will define a variable with name defined as: “prefix”
+ “ ” + “parameter name”. For example, if we define “mean” as the prefix for
expectedValue, and parameter “x”, then variable “mean x” will be defined by
RAVEN. For matrix quantities, RAVEN will define a variable with name defined
as: “prefix” + “ ” + “target parameter name” + “ ” + “feature parameter name”.
For example, if we define “sen” as the prefix for sensitivity, target “y” and feature
“x”, then variable “sen y x” will be defined by RAVEN. Note: These variable will
be used by RAVEN for the internal calculations. It is also accessible by the user
through DataObjects and OutStreams.

* tol, required float attribute, convergence tolerance for the standard error of the
metric.

RAVEN will define a variable with name defined as: “prefix for given metric” + “ ste ”
+ “parameter name” to store the standard error of the given metric with respect to the
given parameter. This variable needs to be included in the <TargetEvaluation>
<DataObject>which is an output of the <Step> in which the <AdaptiveMonteCarlo>
is used. This variable is also available for output to the <SolutionExport> <DataObjec>.

Note: When defining the metrics to use, it is possible to have multiple nodes with
the same name. For example, if a problem has inputs X1, and X2, and the responses
are Y 1, Y 2, it is possible that the desired metrics are the <sigma> of Y 1,and Y 2 on
same tolerance, and <expectedValue> of Y 1,and Y 2 on different tolerance. The
first has the parameters Y 1, Y 2 in the same node with one tolerance attribute, while the
second need to divide into two nodes. One has target Y 1 and another one has target Y 2
instead. This could reduce some computation effort in problems with many responses
or inputs. An example of this is shown below.

In summary, the <convergence> node contains the information that is needed in order to
control the <AdaptiveMonteCarlo> sampler’s convergence criteria.

• <initialSeed>, integer, optional field, initial seeding of random number generator for
Monte Carlo sampler. By default, RAVEN uses an internal static seed.
Default: 20021986

• Assembler Objects These objects are either required or optional depending on the function-
ality of the AdaptiveMonteCarlo Sampler. The objects must be listed with a rigorous syntax
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that, except for the XML node tag, is common among all the objects. Each of these nodes
must contain 2 attributes that are used to identify them within the simulation framework:

– class, required string attribute, the main “class” of the listed object. For example, it
can be ’Models’, ’Functions’, etc.

– type, required string attribute, the object identifier or sub-type. For example, it can
be ’ROM’, ’External’, etc.

The AdaptiveMonteCarlo approach requires or optionally accepts the following object
types:

– <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObjects> block (see Section 12).
The adaptive sampling accepts “DataObjects” of type “PointSet” only.

Example:

<Samplers>
...
<AdaptiveMonteCarlo name = 'AdaptiveName'>

<TargetEvaluation class = 'DataObjects' type =
'PointSet'>DataName</TargetEvaluation>

<Convergence>
<forceIteration>False</forceIteration>
<limit>30</limit>
<persistence>6</persistence>
<expectedValue prefix="mean"

tol="1e-1">y1,y2</expectedValue>
<sigma prefix="sigma" tol="6e-2">y1</sigma>
<sigma prefix="sigma" tol="5e-2">y2</sigma>

</Convergence>
<variable name = 'var1'>

<distribution>
aDistributionNameDefinedInDistributionBlock1

</distribution>
</variable>
<variable name = 'var2'>

<distribution>
aDistributionNameDefinedInDistributionBlock2

</distribution>
</variable>
<variable name = 'var3'>
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<distribution>
aDistributionNameDefinedInDistributionBlock3

</distribution>
</variable>

</AdaptiveMonteCarlo>
...

</Samplers>

10.3.3 Adaptive Dynamic Event Tree

The Adaptive Dynamic Event Tree approach is an advanced methodology employing a smart
sampling around transition zones that determine a change in the status of the system (limit surface),
using the support of a Dynamic Event Tree methodology. The main idea of the application of the
previously explained adaptive sampling approach to the DET comes from the observation that the
DET, when evaluated from a limit surface perspective, is intrinsically adaptive. For this reason, it
appears natural to use the DET approach to perform a goal-function oriented pre-sampling of the
input space.

RAVEN uses ROMs for predicting, in the input space, the location(s) of these transitions, in
order to accelerate the exploration of the input space in proximity of the limit surface.

The specifications of this sampler must be defined within an <AdaptiveDynamicEventTree>
XML block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• printEndXmlSummary, optional string/boolean attribute, this attribute controls the dump-
ing of a “summary” of the DET performed in to an external XML.
Default: False.

• maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

• mode, optional string attribute, controls when the adaptive search needs to begin. Two
options are available:

– ’post’, if this option is activated, the sampler first performs a standard Dynamic
Event Tree analysis. At end of it, it uses the outcomes to start the adaptive search in
conjunction with the DET support.
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– ’online’, if this option is activated, the adaptive search starts at the beginning, dur-
ing the initial standard Dynamic Event Tree analysis. Whenever a transition is detected,
the Adaptive Dynamic Event Tree starts its goal-oriented search using the DET as
support;

Default: post.

• updateGrid, optional boolean attribute, if true, each adaptive request is going to update
the meshing of the initial DET grid.
Default: True.

In the <AdaptiveDynamicEventTree> input block, the user needs to specify the variables
to sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

* type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.
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* construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

* construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

· steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lowerBound, the largest,
the upperBound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upperBound− lowerBound)/steps

* construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ’CDF’, in the
body of <grid>, the user will specify the CDF probability thresholds (nodaliza-
tion in probability). All the bins are checked against the associated <distribution>
bounds. If one or more of them falls outside the distribution’s bounds, the code
will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.
– shape, comma-separated integers, optional field, determines the shape of samples

of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:
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– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

In addition to the <variable> nodes, the main <AdaptiveDynamicEventTree> node
needs to contain two supplementary sub-nodes:

• <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the definition of other attributes that might be defined in this XML node:

– limit, optional integer attribute, the maximum number of adaptive samples (itera-
tions).
Default: infinite.

– forceIteration, optional boolean attribute, this attribute controls if at least a
number of iterations equal to limit must be performed.
Default: False.

– weight, optional string attribute (case insensitive), defines on what the convergence
check needs to be performed.

* ’CDF’, the convergence is checked in terms of probability (Cumulative Distri-
bution Function). From a practical point of view, this means that full uncertain
domain is discretized in a way that the probability volume of each cell is going to
be equal to the tolerance specified in the body of the node <Convergence>
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* ’value’, the convergence is checked on the hyper-volume in terms of variable
values.From a practical point of view, this means that full uncertain domain is
discretized in a way that the “volume” fraction of each cell is going to be equal to
the tolerance specified in the body of the node <Convergence>. In other words,
each cell volume is going to be equal to the total volume times the tolerance.

Default: CDF.

– persistence, optional integer attribute, offers an additional convergence check.
It represents the number of times the computed error needs to be below the inputted
tolerance before convergence is reported.
Default: 5.

– subGridTol, optional float attribute, this attribute is used to activate the multi-grid
approach (adaptive meshing) of the constructed evaluation grid (see attribute weight).
In case this attribute is specified, the final grid discretization (cell’s “volume content”
aka convergence confidence) is represented by the value here specified. The sampler
converges on the initial coarse grid, defined by the tolerance specified in the body of
the node <Convergence>. When the Limit Surface has been identified on the coarse
grid, the sampler starts refining the grid until the “volume content” of each cell is equal
to the value specified in this attribute (Multi-grid approach).
Default: None.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

• Assembler Objects These objects are either required or optional depending on the function-
ality of the AdaptiveDynamicEventTree Sampler. The objects must be listed with a rigorous
syntax that, except for the XML node tag, is common among all the objects. Each of these
nodes must contain 2 attributes that are used to identify them within the simulation frame-
work:

– class, required string attribute, the main “class” of the listed object. For example, it
can be ’Models’, ’Functions’, etc.

– type, required string attribute, the object identifier or sub-type. For example, it can
be ’ROM’, ’External’, etc.

The AdaptiveDynamicEventTree approach requires or optionally accepts the following ob-
ject types:

– <Function>, string, required field, the body of this XML block needs to contain
the name of an external function object defined within the <Functions> main block
(see Section 16). This object represents the boolean function that defines the transition
boundaries. This function must implement a method called residuumSign(self),
that returns either -1 or 1, depending on the system conditions (see Section 16.

147



– <ROM>, , string, optional field, if used, the body of this XML node must contain the
name of a ROM defined in the <Models> block (see Section 15.3). The ROM here
specified is going to be used as “acceleration model” to speed up the convergence of
the sampling strategy. The <Target> XML node in the ROM input block (within
the <Models> section) needs to match the name of the goal <Function> (e.g. if
the goal function is named “transitionIdentifier”, the <Target> of the ROM needs to
report the same name: <Target>transitionIdentifier<Target>).

– <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObjects> block (see Section 12).
The adaptive sampling accepts “DataObjects” of type “PointSet” only.

Example:

<Samplers>
...
<AdaptiveDynamicEventTree name = 'AdaptiveName'>

<ROM class = 'Models' type = 'ROM'ROMname</ROM>
<Function class = 'Functions' type =

'External'>FunctionName</Function>
<TargetEvaluation class = 'DataObjects' type =

'PointSet'>DataName</TargetEvaluation>
<Convergence limit = '3000' subGridTol= '0.001'

forceIteration = 'False' weight = 'CDF'
subGriTol='''1e-5' persistence = '5'>
1e-2

</Convergence>
<variable name = 'var1'>

<distribution>
aDistributionNameDefinedInDistributionBlock1

</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>

</variable>
<variable name = 'var2'>

<distribution>
aDistributionNameDefinedInDistributionBlock2

</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>

</variable>
<variable name = 'var3'>

<distribution>
aDistributionNameDefinedInDistributionBlock3

</distribution>
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<grid type='CDF' construction='custom'>0.1 0.8</grid>
</variable>

</AdaptiveDynamicEventTree>
...

</Samplers>

Associated External Python Module:

def __residuumSign(self):
if self.whatEverValue < self.OtherValue:

return 1
else:

return -1

10.3.4 Adaptive Hybrid Dynamic Event Tree

The Adaptive Hybrid Dynamic Event Tree approach is an advanced methodology employing
a smart sampling around transition zones that determine a change in the status of the system
(limit surface), using the support of the Hybrid Dynamic Event Tree methodology. Practically,
this methodology represents a conjunction between the previously described Adaptive DET and
the Hybrid DET method for the treatment of the epistemic variables.

Regarding the input requirements, the AHDET sampler is a “sub-type” of the
<AdaptiveDynamicEventTree> sampler. For this reason, its specifications must be defined
within a <AdaptiveDynamicEventTree> block.

The specifications of this sampler must be defined within an <AdaptiveDynamicEventTree>
XML block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• printEndXmlSummary, optional string/boolean attribute, this attribute controls the dump-
ing of a “summary” of the DET performed in to an external XML.
Default: False.

• maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

• mode, optional string attribute, controls when the adaptive search needs to begin. Two
options are available:
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– ’post’, if this option is activated, the sampler first performs a standard Dynamic
Event Tree analysis. At end of it, it uses the outcomes to start the adaptive search in
conjunction with the DET support.

– ’online’, if this option is activated, the adaptive search starts at the beginning, dur-
ing the initial standard Dynamic Event Tree analysis. Whenever a transition is detected,
the Adaptive Dynamic Event Tree starts its goal-oriented search using the DET as
support;

Default: post.

• updateGrid, optional boolean attribute, if true, each adaptive request is going to update
the meshing of the initial DET grid.
Default: True.

In the <AdaptiveDynamicEventTree> input block, the user needs to specify the vari-
ables to sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:
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* type, required string attribute, user-defined discretization metric type: 1) ’CDF’,
the grid will be specified based on cumulative distribution function probability
thresholds, and 2) ’value’, the grid will be provided using variable values.

* construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ’CDF’ or ’value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

* construction=’equal’. The grid is going to be constructed equally-spaced
(type=’value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

· steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lowerBound, the largest,
the upperBound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upperBound− lowerBound)/steps

* construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ’CDF’, in the
body of <grid>, the user will specify the CDF probability thresholds (nodaliza-
tion in probability). All the bins are checked against the associated <distribution>
bounds. If one or more of them falls outside the distribution’s bounds, the code
will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.
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Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

In addition to the <variable> nodes, the main <AdaptiveDynamicEventTree> node
needs to contain two supplementary sub-nodes:

• <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the definition of other attributes that might be defined in this XML node:

– limit, optional integer attribute, the maximum number of adaptive samples (itera-
tions).
Default: infinite.

– forceIteration, optional boolean attribute, this attribute controls if at least a
number of iterations equal to limit must be performed.
Default: False.

– weight, optional string attribute (case insensitive), defines on what the convergence
check needs to be performed.
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* ’CDF’, the convergence is checked in terms of probability (Cumulative Distri-
bution Function). From a practical point of view, this means that full uncertain
domain is discretized in a way that the probability volume of each cell is going to
be equal to the tolerance specified in the body of the node <Convergence>

* ’value’, the convergence is checked on the hyper-volume in terms of variable
values.From a practical point of view, this means that full uncertain domain is
discretized in a way that the “volume” fraction of each cell is going to be equal to
the tolerance specified in the body of the node <Convergence>. In other words,
each cell volume is going to be equal to the total volume times the tolerance.

Default: CDF.

– persistence, optional integer attribute, offers an additional convergence check.
It represents the number of times the computed error needs to be below the inputted
tolerance before convergence is reported.
Default: 5.

– subGridTol, optional float attribute, this attribute is used to activate the multi-grid
approach (adaptive meshing) of the constructed evaluation grid (see attribute weight).
In case this attribute is specified, the final grid discretization (cell’s “volume content”
aka convergence confidence) is represented by the value here specified. The sampler
converges on the initial coarse grid, defined by the tolerance specified in the body of
the node <Convergence>. When the Limit Surface has been identified on the coarse
grid, the sampler starts refining the grid until the “volume content” of each cell is equal
to the value specified in this attribute (Multi-grid approach).
Default: None.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

• Assembler Objects These objects are either required or optional depending on the function-
ality of the AdaptiveDynamicEventTree Sampler. The objects must be listed with a rigorous
syntax that, except for the XML node tag, is common among all the objects. Each of these
nodes must contain 2 attributes that are used to identify them within the simulation frame-
work:

– class, required string attribute, the main “class” of the listed object. For example, it
can be ’Models’, ’Functions’, etc.

– type, required string attribute, the object identifier or sub-type. For example, it can
be ’ROM’, ’External’, etc.

The AdaptiveDynamicEventTree approach requires or optionally accepts the following ob-
ject types:
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– <Function>, string, required field, the body of this XML block needs to contain
the name of an external function object defined within the <Functions> main block
(see Section 16). This object represents the boolean function that defines the transition
boundaries. This function must implement a method called residuumSign(self),
that returns either -1 or 1, depending on the system conditions (see Section 16.

– <ROM>, , string, optional field, if used, the body of this XML node must contain the
name of a ROM defined in the <Models> block (see Section 15.3). The ROM here
specified is going to be used as “acceleration model” to speed up the convergence of
the sampling strategy. The <Target> XML node in the ROM input block (within
the <Models> section) needs to match the name of the goal <Function> (e.g. if
the goal function is named “transitionIdentifier”, the <Target> of the ROM needs to
report the same name: <Target>transitionIdentifier<Target>).

– <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObjects> block (see Section 12).
The adaptive sampling accepts “DataObjects” of type “PointSet” only.

As it can be noticed, the basic specifications of the Adaptive Hybrid Dynamic Event Tree
method are consistent with the ones for the ADET methodology. In order to activate the Adap-
tive Hybrid Dynamic Event Tree sampler, the main <AdaptiveDynamicEventTree> block
needs to contain an additional sub-node called <HybridSampler>. This sub-node needs to con-
tain the following attribute:

• type, required string attribute, type of pre-sampling strategy to be used. Up to now only
one option is available:

– ’LimitSurface’. With this option, the epistemic variables here listed are going
to be part of the LS search. This means that the discretization of the domain of these
variables is determined by the <Convergece> node.

Independent of the type of HybridSampler that has been specified, the <HybridSampler> must
contain the variables that need to be sampled. As already mentioned, these variables are specified
within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
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matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
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the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

Example:

<Samplers>
...
<AdaptiveDynamicEventTree name = 'AdaptiveName'>

<ROM class = 'Models' type = 'ROM'ROMname</ROM>
<Function class = 'Functions' type =

'External'>FunctionName</Function>
<TargetEvaluation class = 'DataObjects' type =

'PointSet'>DataName</TargetEvaluation>
<Convergence limit = '3000' subGridTol= '0.001'

forceIteration = 'False' weight = 'CDF'
subGriTol='''1e-5' persistence = '5'>
1e-2

</Convergence>
<HybridSampler type='LimitSurface'>

<variable name = 'epistemicVar1'>
<distribution>

aDistributionNameDefinedInDistributionBlock1
</distribution>

</variable>
<variable name = 'epistemicVar2'>

<distribution>
aDistributionNameDefinedInDistributionBlock2

</distribution>
</variable>

</HybridSampler>
<variable name = 'var1'>

<distribution>
aDistributionNameDefinedInDistributionBlock3

</distribution>
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<grid type='CDF' construction='custom'>0.1 0.8</grid>
</variable>
<variable name = 'var2'>

<distribution>
aDistributionNameDefinedInDistributionBlock4

</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>

</variable>
<variable name = 'var3'>

<distribution>
aDistributionNameDefinedInDistributionBlock5

</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>

</variable>

</AdaptiveDynamicEventTree>
...

</Samplers>

Associated External Python Module:

def __residuumSign(self):
if self.whatEverValue < self.OtherValue:

return 1
else:

return -1

10.3.5 Adaptive Sparse Grid

The Adaptive Sparse Grid approach is an advanced methodology that employs an intelligent
search for the most suitable sparse grid quadrature to characterize a model. To perform such
sampling, RAVEN adaptively builds an index set and generates sparse grids in a similar manner to
Sparse Grid Collocation samplers. In each iterative step, the adaptive index set determines the next
possible quadrature orders to add in each dimension, and determines the index set point that would
offer the largest impact to one of the convergence metrics. This process continues until the total
impact of all the potential index set points is less than tolerance. For many models, this function
converges after fewer runs than a traditional Sparse Grid Collocation sampling. However, it should
be noted that this algorithm fails in the event that the partial derivative of the response surface with
respect to any single input dimension is zero at the origin of the input domain. For example, the
adaptive algorithm fails for the model f(x) = x · y.
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The specifications of this sampler must be defined within an <Adaptive Sparse Grid>
XML block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Adaptive Sparse Grid> input block, the user needs to specify the variables to
sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.
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– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

In addition to the <variable> nodes, the main XML node <AdaptiveSparseGrid>
needs to contain the following supplementary sub-nodes:

• <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the target attribute of this node.

– target, required string attribute, the metric for convergence. The following metrics
are available: ’variance’, which converges the sparse quadrature integration of the
second moment of the model.
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– maxPolyOrder, optional integer attribute, limits the maximum size equivalent poly-
nomial for any one dimension.
Default: 10.

– persistence, optional integer attribute, defines the number of index set points that
are required to be found before calculation can exit. Setting this to a higher value can
help if the adaptive process is not finding significant indices on its own.
Default: 2.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

• <convergenceStudy>, optional node, if included, triggers writing state points at partic-
ular numbers of model solves for the purpose of a convergence study. The study is performed
by writing XML output files as described in the OutStreams for ROMs at the state points re-
quested, using ’all’ as the requested <what> values. The state points are identified when
a certain number of model runs is passed, as specified by the <runStatePoints> node.
This node has the following sub-nodes to define its parameters:

– <runStatePoints>, list of integers, required node, lists the number of model runs
at which state points should be written. Note that these will be written when the re-
quested number of runs is met or passed, so the actual value is often somewhat more
than the requested value, and the exact value will be listed in the XML output.

– <baseFilename>, string, optional node, if specified determines the base file name
for the state point outputs. If not specified, defaults to ’out ’.

– <pickle>, no text, optional node, if this node is included, serialized (pickled) ver-
sions of the ROM at each of the run states is also created in the working directory, with
the format <baseFilename><numRuns>.pk, such as out 100.pk.

• <logFile>, optional node, if included, the log file onto which the adaptive step progress
can be printed. The log includes the values of included polynomial coefficients as well as
the expected impacts of polynomial coefficients not yet included. This is different from the
convergenceStudy print, which will give statistical moments at certain steps.

• <maxRuns>, optional node, if included, the adaptive sampler will track the number of
computational solves necessary to construct the associated GaussPolynomialROM. If at any
point the number of solves exceeds the value given, it will not initiate any additional solves,
and will exit when existing solves finish.

Assembler Objects These objects are either required or optional depending on the functionality of
the Adaptive Sparse Grid Sampler. The objects must be listed with a rigorous syntax that, except
for the XML node tag, is common among all the objects. Each of these nodes must contain 2
attributes that are used to identify them within the simulation framework:
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• class, required string attribute, the main “class” of the listed object. For example, it can
be ’Models’, ’Functions’, etc.

• type, required string attribute, the object identifier or sub-type. For example, it can be
’ROM’, ’External’, etc.

The Adaptive Sparse Grid approach requires or optionally accepts the following object types:

• <ROM>, string, required field, the body of this XML node must contain the name of an
appropriate ROM defined in the <Models> block (see Section 15.3).

• <TargetEvaluation>, string, required field, represents the container where the system
evaluations are stored. From a practical point of view, this XML node must contain the name
of a data object defined in the <DataObjects> block (see Section 12). The Adaptive
Sparse Grid sampling accepts “DataObjects” of type “PointSet” only.

Example:

<Samplers>
...
<AdaptiveSparseGrid name="ASG" verbosity='debug'>

<Convergence target='coeffs'>1e-2</Convergence>
<variable name="x1">

<distribution>UniDist</distribution>
</variable>
<variable name="x2">

<distribution>UniDist</distribution>
</variable>
<ROM class = 'Models' type = 'ROM'>gausspolyrom</ROM>
<TargetEvaluation class = 'DataObjects' type =

'PointSet'>solns</TargetEvaluation>
</AdaptiveSparseGrid>
...

</Samplers>

Like in the SparseGridCollocation sampler, if the covariance matrix is provided and the input
parameters are assumed to have the multivariate normal distribution, the AdaptiveSparseGrid can
be also used. This means one creates the sparse grids of variables listed by <latentVariables>
in the transformed space. If this is the case, the user needs to provide additional information, i.e. the
<transformation> under <MultivariateNormal> of <Distributions> (more in-
formation can be found in Section 9.2). In addition, the node <variablesTransformation>
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is also required for AdaptiveSparseGrid sampler. This node is used to tranform the variables
specified by <latentVariables> in the transformed space of input into variables spefified by
<manifestVariables> in the input space. The variables listed in <latentVariables>
should be predefined in <variable>, and the variables listed in <manifestVariables> are
used by the <Models>.

• <variablesTransformation>, optional field. this XML node accepts one attribute:

– distribution, required string attribute, the name for the distribution defined in the
XML node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.

In addition, this XML node also accepts three childen nodes:

– <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

– <manifestVariables>, comma separated string, required field, user-defined man-
ifest variables that can be used by the model.

– <manifestVariablesIndex>, comma separated string, optional field, user-defined
manifest variables indices paired with <manifestVariables>. These indices in-
dicate the position of manifest variables associated with multivariate normal distribu-
tion defined in the XML node <Distributions>. The indices should be postive
integer. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

– <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

...
<Models>

...
<ExternalModel ModuleToLoad="lorentzAttractor_noK"

name="PythonModule" subType="">
<variables>sigma,rho,beta,x,y,z,time,x0,y0,z0</variables>

</ExternalModel>
<ROM name="gausspolyrom" subType="GaussPolynomialRom">

<Target>ans</Target>
<Features>x1,y1,z1</Features>
<IndexSet>TensorProduct</IndexSet>
<PolynomialOrder>1</PolynomialOrder>

</ROM>
...
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</Models>

<Distributions>
...
<MultivariateNormal name='MVNDist' method='pca'>

<transformation>
<rank>3</rank>

</transformation>
<mu>0.0 1.0 2.0</mu>
<covariance type="abs">

1.0 0.6 -0.4
0.6 1.0 0.2
-0.4 0.2 0.8

</covariance>
</MultivariateNormal>
...

</Distributions>

<Samplers>
...
<AdaptiveSparseGrid name='ASC'>

<variable name='x0'>
<distribution dim='1'>MVNDist</distribution>

</variable>
<variable name='y0'>

<distribution dim='2'>MVNDist</distribution>
</variable>
<variable name='z0'>

<distribution dim='3'>MVNDist</distribution>
</variable>
<variablesTransformation model="PythonModule">

<latentVariables>x1,y1,z1</latentVariables>
<manifestVariables>x0,y0,z0</manifestVariables>
<method>pca</method>

</variablesTransformation>
<ROM class = 'Models' type = 'ROM'>gausspolyrom</ROM>
<TargetEvaluation class = 'DataObjects' type =

'PointSet'>solns</TargetEvaluation>
</AdaptiveSparseGrid>
...

</Samplers>
...
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10.3.6 Adaptive Sobol Decomposition

The Adaptive Sobol Decomposition approach is an advanced methodology that decomposes an
uncertainty space into subsets and adaptively includes the most influential ones. For example, for a
response function f(a, b, c), the full list of subsets include (a), (b), (c), (a, b), (a, c), (b, c), (a, b, c).
A Gauss Polynomial ROM is constructed for each included subset using the Adaptive Sparse Grid
sampler. The importance of each subset is estimated based on the importance of preceding subsets;
that is, the impact of (a, b) on the representation of f is estimated using the impact of (a) and (b).
Because of the excellent performance of Gauss Polynomial ROMs for small-dimension spaces,
this sampler used to construct an HDMR ROM can be very efficient. Note that the ROM specified
for this sampler must be an HDMRRom specified in the Models block.

The specifications of this sampler must be defined within an <Adaptive Sobol> XML
block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Adaptive Sobol> input block, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
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the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>
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In addition to the <variable> nodes, the main XML node <AdaptiveSobol> needs to
contain the following supplementary sub-nodes:

• <Convergence>, required node, Convergence properties. This node contains the follow-
ing properties that can be set by sub-nodes:

– <relTolerance>, required float, the relative tolerance to converge. This will com-
pare to the estimate of subset polynomial errors and additional subset polynomials over
the variance of the expansion so far to determine convergence.

– <maxRuns>, optional integer field, a limit for the number of model calls. Once this
limit is reached, no additional subsets will be generated or considered; however, exist-
ing subsets will continue to be trained. If not specified, no limit on solves is imposed.

– <maxSobolOrder>, optional integer field, the largest polynomials orders to use in
subset GaussPolynomialRom objects. If specified, polynomial indices with a value
larger than the value given will be rejected during adaptive construction.

– <progressParam>, optional float field, a favoritism parameter ranging between 0
and 2. At 0, the algorithm will always prefer adding polynomials to adding new subsets
in the HDMR expansion. At 2, the opposite is true. Default is 1.

– <logFile>, optional string field, a file to which adaptive progress is recorded. If
specified, each adaptive step will trigger printing progress to the file given, including
the estimated error at the step, the next adaptive step to take, the coefficient of each
polynomial within each gPC expansion, and the actual and expected Sobol sensitivities
of each HDMR subset. Default is no printing.

– <subsetVerbosity>, optional string field, the verbosity for components con-
structed during the adaptive HDMR process. Options are silent, quiet, all, or debug,
in order of verbosity. If an invalid entry is provided, will resort to default. Default is
quiet.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

• <convergenceStudy>, optional node, if included, triggers writing state points at partic-
ular numbers of model solves for the purpose of a convergence study. The study is performed
by writing XML output files as described in the OutStreams for ROMs at the state points re-
quested, using ’all’ as the requested <what> values. The state points are identified when
a certain number of model runs is passed, as specified by the <runStatePoints> node.
This node has the following sub-nodes to define its parameters:

– <runStatePoints>, list of integers, required node, lists the number of model runs
at which state points should be written. Note that these will be written when the re-
quested number of runs is met or passed, so the actual value is often somewhat more
than the requested value, and the exact value will be listed in the XML output.
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– <baseFilename>, string, optional node, if specified determines the base file name
for the state point outputs. If not specified, defaults to ’out ’.

– <pickle>, no text, optional node, if this node is included, serialized (pickled) ver-
sions of the ROM at each of the run states is also created in the working directory, with
the format <baseFilename><numRuns>.pk, such as out 100.pk.

Like the Sobol, if multivariate normal distribution is provided, the following node need to
be specified:

• – <variablesTransformation>, optional field. this XML node accepts one at-
tribute:

* distribution, required string attribute, the name for the distribution defined
in the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

In addition, this XML node also accepts three childen nodes:

* <latentVariables>, comma separated string, required field, user-defined
latent variables that are used for the variables transformation. All the variables
listed under this node should be also mentioned in <variable>.

* <manifestVariables>, comma separated string, required field, user-defined
manifest variables that can be used by the model.

* <manifestVariablesIndex>, comma separated string, optional field, user-
defined manifest variables indices paired with <manifestVariables>. These
indices indicate the position of manifest variables associated with multivariate nor-
mal distribution defined in the XML node <Distributions>. The indices
should be postive integer. If not provided, the code will use the positions of mani-
fest variables listed in <manifestVariables> as the indices.

* <method>, string, required field, the method that is used for the variables trans-
formation. The currently available method is ’pca’.

Assembler Objects These objects are either required or optional depending on the functionality of
the AdaptiveSobol Sampler. The objects must be listed with a rigorous syntax that, except for the
XML node tag, is common among all the objects. Each of these nodes must contain 2 attributes
that are used to identify them within the simulation framework:

• class, required string attribute, the main “class” of the listed object. For example, it can
be ’Models’, ’Functions’, etc.

• type, required string attribute, the object identifier or sub-type. For example, it can be
’ROM’, ’External’, etc.

The AdaptiveSobol approach requires or optionally accepts the following object types:
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• <ROM>, string, required field, the body of this XML node must contain the name of an
appropriate ROM defined in the <Models> block (see Section 15.3).

• <TargetEvaluation>, string, required field, represents the container where the system
evaluations are stored. From a practical point of view, this XML node must contain the name
of a data object defined in the <DataObjects> block (see Section 12). The Adaptive
Sobol sampling accepts “DataObjects” of type “PointSet” only.

Example:

<Samplers>
...
<AdaptiveSobol name="AS" verbosity='debug'>

<Convergence>
<relTolerance>1e-5</relTolerance>
<maxRuns>150</maxRuns>
<maxSobolOrder>3</maxSobolOrder>
<progressParam>1</progressParam>
<logFile>progress.txt</logFile>
<subsetVerbosity>silent</subsetVerbosity>

</Convergence>
<variable name="x1">

<distribution>UniDist</distribution>
</variable>
<variable name="x2">

<distribution>UniDist</distribution>
</variable>
<ROM class = 'Models' type = 'ROM'>hdmrrom</ROM>
<TargetEvaluation class = 'DataObjects' type =

'PointSet'>solns</TargetEvaluation>
</AdaptiveSobol>
...

</Samplers>

10.4 Markov Chain Monte Carlo

The Markov chain Monte Carlo (MCMC) is a Sampler entity in the RAVEN framework. It provides
enormous scope for realistic statistical modeling. MCMC is essentially Monte Carlo integration
using Markov chain. Bayesians, and sometimes also frequentists, need to integrate over possibly
high-dimensional probability distributions to make inference about model parameters or to make
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predictions. Bayesians need to integrate over the posterior distributions of model parameters given
the data, and frequentists may need to integrate over the distribution of observables given parameter
values. Monte Carlo integration draws samples from the required distribution, and then forms
samples averages to approximate expectations. MCMC draws these samples by running a cleverly
constructed Markov chain for a long time. There are a large number of MCMC algorithms, and
popular families include Gibbs sampling, Metropolis-Hastings, slice sampling, Hamiltonian Monte
Carlo, and many others. Regardless of the algorithm, the goal in Bayesian inference is to maximize
the unnormalized joint posterior distribution and collect samples of the target distributions, which
are marginal posterior distributions, later to be used for inference.

10.4.1 Metropolis (Metropolis-Hastings Sampler)

The Metropolis-Hastings (MH) algorithm is a MCMC method for obtaining a sequence of random
samples from a probability distribution from which direct sampling is difficult. This sequence can
be used to approximate the distribution or to compute an integral. It simulates from a probability
distribution by making use of the full joint density function and (independent) proposal distribu-
tions for each of the variables of interest.

The specifications of this sampler must be defined within an <Metropolis> XML block.
This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Metropolis> input block, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:
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– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <initial>, float, optional field, specified the initial value for given variable.

– <proposal>, Assembler Object, specifies the proposal distribution for this variable.
Note: We only allow one-dimensional symmetric distribution to be the proposal dis-

tribution. This node must contain the following two attributes:

* class, required string attribute, the main “class” of the listed object. Only “Dis-
tributions” is allowed.

* type, required string attribute, the object identifier or sub-type.

– <probabilityFunction>, Assembler Object, specifies the prior distribution func-
tion.. This node must contain the following two attributes:

* class, required string attribute, the main “class” of the listed object. Only
“Functions” is allowed.

* type, required string attribute, the object identifier or sub-type. Only “External”
is allowed.

Note: For MCMC sampler, we only allow “continuous” distributions as input to <variable>.
In addition, we allow the user to provide their defined prior distribution through the <probabilityFunction>.
In this case, the “pdf” method needs to be defined in the external function. For example:

def pdf(self):
"""
Method required for "probabilityFunction" used by MCMC sampler
that is used to define the prior probability function
@ In, None
@ Out, priorPDF, float, the prior pdf value

"""
priorPDF = 1/(1-self.rho**2)**(3/2)
return priorPDF

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:
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– name, required string attribute, user-defined name of this constant.

– shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

In the Metropolis input block, the user needs to specify the variables need to be sampled. As al-
ready mentioned, these variables are inputted within consecutive xml blocks called <variable>.
In addition, the settings for this sampler need to be specified in the <samplerInit>XML block:

• <samplerInit>, required field. In this xml-node, the following xml sub-nodes need to
be specified:
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– <limit>, integer, required field, number of Metropolis samples needs to be gener-
ated;

– <initialSeed>, integer, optional field, initial seeding of random number genera-
tor;

– <burnIn>, integer, optional field, specifies the number of initial samples that would
be discarded.
Default: 0

– <tune>, bool, optional field, indicates whether to tune the scaling parameter of pro-
posal distributions or not;
Default: ‘True’

– <tuneInterval>, integer, optional field, the number of sample steps for each tun-
ing of scaling parameter;
Default: 100

In addition to the <variable> nodes, the main XML node <Metropolis> needs to con-
tain the following supplementary sub-nodes:

• <likelihood>, string, required node, the output from the user provided likelihood func-
tion This node accept one attribute:

– log, bool, optional field, indicates whether the the log likelihood value is provided or
not. When True, the code expects to receive the log likehood value.
Default: ‘False’

• Assembler Objects These objects are either required or optional depending on the func-
tionality of the Metropolis Sampler. The objects must be listed with a rigorous syntax that,
except for the XML node tag, is common among all the objects. Each of these nodes must
contain 2 attributes that are used to identify them within the simulation framework:

– class, required string attribute, the main “class” of the listed object. For example, it
can be ’Models’, ’Functions’, etc.

– type, required string attribute, the object identifier or sub-type. For example, it can
be ’ROM’, ’External’, etc.

The Metropolis approach requires or optionally accepts the following object types:

– <ConstantSource>, string, optional field, the body of this XML node must con-
tain the name of an appropriate DataObject defined in the <DataObjects> block
(see Section 12). It is used as a source from which constants can take values.
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– <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObjects> block (see Section 12).
The object here specified must be input as <Output> in the Steps that employ this
sampling strategy. The Metropolis sampling accepts “DataObjects” of type “PointSet”
only.

– <Restart>, string, optional field, the body of this XML node must contain the name
of an appropriate DataObject defined in the <DataObjects> block (see Section 12).
It is used as a “restart” tool, where it accepts pre-existing solutions in the PointSet
instead of recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

– <restartTolerance>, float, optional field, the body of this XML node must con-
tain a valid floating point value. If a <Restart> node is supplied for this <Sampler>,
this node offers a way to determine how strictly matching points are determined. Given
a point in the input space, if that point is within a relative Euclidean distance (equal to
the tolerance) of a restart point, the nearest restart point will be used.
Default: 1e-14

Example:

<Samplers>
...
<Metropolis name="Metropolis">

<samplerInit>
<limit>1000</limit>
<initialSeed>070419</initialSeed>
<tune>10</tune>

</samplerInit>
<likelihood log="False">zout</likelihood>
<variable name="xin">

<distribution>normal</distribution>
<initial>0</initial>
<proposal class="Distributions"

type="Normal">normal</proposal>
</variable>
<variable name="yin">

<distribution>normal</distribution>
<initial>0</initial>
<proposal class="Distributions"

type="Normal">normal</proposal>
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<!-- <proposal>normal</proposal> -->
</variable>
<TargetEvaluation class="DataObjects"

type="PointSet">outSet</TargetEvaluation>
</Metropolis>
...

</Samplers>

10.4.2 Adaptive Metropolis Sampler

The search for improved proposal distributions of Metropolis sampler is often done manually,
through trial and error, though this can be difficult especially in high dimensions. An alternative
approach is adaptive Metropolis, which asks the computer to automatically “learn” better parame-
ter values “on the fly”.

The specifications of this sampler must be defined within an <AdaptiveMetropolis>
XML block. This XML node accepts one attribute:

• name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <AdaptiveMetropolis> input block, the user needs to specify the variables to
sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

– <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
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explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

– <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement a
method named “evaluate”. Note: Alternatively, this node must be ommitted if the
<distribution> node is supplied.

– <initial>, float, optional field, specified the initial value for given variable.
– <proposal>, Assembler Object, specifies the proposal distribution for this variable.

Note: We only allow one-dimensional symmetric distribution to be the proposal dis-
tribution. This node must contain the following two attributes:

* class, required string attribute, the main “class” of the listed object. Only “Dis-
tributions” is allowed.

* type, required string attribute, the object identifier or sub-type.

* dim, positive integer, optional attribute, required for multivariate normal proposal
distribution, indicates the dimension within the multivariate normal distribution
that corresponds to this variable.

– <probabilityFunction>, Assembler Object, specifies the prior distribution func-
tion.. This node must contain the following two attributes:

* class, required string attribute, the main “class” of the listed object. Only
“Functions” is allowed.

* type, required string attribute, the object identifier or sub-type. Only “External”
is allowed.

THIS NODE IS CURRENTLY NOT ALLOWED FOR ADAPTIVE METROPO-
LIS SAMPLER.

Note: For this sampler, we only allow “continuous” distributions as input to <variable>.

• <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

– name, required string attribute, user-defined name of this constant.
– shape, comma-separated integers, optional field, determines the shape of samples

of the constant value. For example, shape=“2,3” will shape the values into a 2
by 3 matrix, while shape=“10” will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.
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Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

– source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

– index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ’MyConstant’, which is
identified in the <ConstantSource> node. To find the value of the constant in ’MyConstant’,
the Sampler will look at the realization with index ’3’ for the value of variable ’A’ to use
as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'

type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'

index='3'>A</constant>
</WhatEverSampler>

</Samplers>

In the AdaptiveMetropolis input block, the user needs to specify the variables need to be
sampled. As already mentioned, these variables are inputted within consecutive xml blocks called
<variable>. In addition, the settings for this sampler need to be specified in the <samplerInit>
XML block:

• <samplerInit>, required field. In this xml-node, the following xml sub-nodes need to
be specified:

– <limit>, integer, required field, number of Metropolis samples needs to be gener-
ated;

– <initialSeed>, integer, optional field, initial seeding of random number genera-
tor;

– <burnIn>, integer, optional field, specifies the number of initial samples that would
be discarded.
Default: 0
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– <tune>, bool, optional field, indicates whether to tune the scaling parameter of pro-
posal distributions or not;
Default: ‘True’

– <tuneInterval>, integer, optional field, the number of sample steps for each tun-
ing of scaling parameter;
Default: 100

– <adaptiveInterval>, integer, optional field, the number of sample steps for each
proposal parameters update;
Default: 20

In addition to the <variable> nodes, the main XML node <AdaptiveMetropolis>
needs to contain the following supplementary sub-nodes:

• <likelihood>, string, required node, the output from the user provided likelihood func-
tion This node accept one attribute:

– log, bool, optional field, indicates whether the the log likelihood value is provided or
not. When True, the code expects to receive the log likehood value.
Default: ‘False’

• Assembler Objects These objects are either required or optional depending on the func-
tionality of the Metropolis Sampler. The objects must be listed with a rigorous syntax that,
except for the XML node tag, is common among all the objects. Each of these nodes must
contain 2 attributes that are used to identify them within the simulation framework:

– class, required string attribute, the main “class” of the listed object. For example, it
can be ’Models’, ’Functions’, etc.

– type, required string attribute, the object identifier or sub-type. For example, it can
be ’ROM’, ’External’, etc.

The Metropolis approach requires or optionally accepts the following object types:

– <ConstantSource>, string, optional field, the body of this XML node must con-
tain the name of an appropriate DataObject defined in the <DataObjects> block
(see Section 12). It is used as a source from which constants can take values.

– <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObjects> block (see Section 12).
The object here specified must be input as <Output> in the Steps that employ this
sampling strategy. The Adaptive Metropolis sampling accepts “DataObjects” of type
“PointSet” only.
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– <Restart>, string, optional field, the body of this XML node must contain the name
of an appropriate DataObject defined in the <DataObjects> block (see Section 12).
It is used as a “restart” tool, where it accepts pre-existing solutions in the PointSet
instead of recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

– <restartTolerance>, float, optional field, the body of this XML node must con-
tain a valid floating point value. If a <Restart> node is supplied for this <Sampler>,
this node offers a way to determine how strictly matching points are determined. Given
a point in the input space, if that point is within a relative Euclidean distance (equal to
the tolerance) of a restart point, the nearest restart point will be used.
Default: 1e-14

Example:

<Samplers>
...
<AdaptiveMetropolis name="AdaptiveMetropolis">

<samplerInit>
<limit>1000</limit>
<initialSeed>070419</initialSeed>
<burnIn>500</burnIn>

</samplerInit>
<likelihood log="False">zout</likelihood>
<variable name="xin">

<distribution>normal</distribution>
<initial>2</initial>

</variable>
<variable name="yin">

<distribution>normal</distribution>
<initial>2</initial>

</variable>
<TargetEvaluation class="DataObjects"

type="PointSet">outSet</TargetEvaluation>
</AdaptiveMetropolis>
...

</Samplers>
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11 Optimizers

The optimizer is another important entity in the RAVEN framework. It performs the driving of
a specific “goal function” or “objective function” over the model for value optimization. The
Optimizer can be used almost anywhere a Sampler can be used, and is only distinguished from
other AdaptiveSampler strategies for clarity.

11.1 GradientDescent

The <GradientDescent> optimizer represents an a la carte option for performing gradient-
based optimization with a variety of gradient estimation techniques, stepping strategies, and ac-
ceptance criteria. Gradient descent optimization generally behaves as a ball rolling down a hill;
the algorithm estimates the local gradient at a point, and attempts to move “downhill” in the op-
posite direction of the gradient (if minimizing; the opposite if maximizing). Once the lowest point
along the iterative gradient search is discovered, the algorithm is considered converged. Note
that gradient descent algorithms are particularly prone to being trapped in local minima; for this
reason, depending on the model, multiple trajectories may be needed to obtain the global solution.

When used as part of a <MultiRun> step, this entity provides additional information through
the <SolutionExport> DataObject. The following variables can be requested within the
<SolutionExport>:

• trajID: integer identifier for different optimization starting locations and paths

• iteration: integer identifying which iteration (or step, or generation) a trajectory is on

• accepted: string acceptance status of the potential optimal point (algorithm dependent)

• rejectReason: discription of reject reason, ’noImprovement’ means rejected the new
optimization point for no improvement from last point, ’implicitConstraintsViolation’ means
rejected by implicit constraints violation, return None if the point is accepted

• {VAR}: any variable from the <TargetEvaluation> input or output; gives the value of
that variable at the optimal candidate for this iteration.

• stepSize: the size of step taken in the normalized input space to arrive at each optimal
point

• conv {CONV}: status of each given convergence criteria

• CG task: for ConjugateGradient, current task of line search. FD suggests continuing the
search, and CONV indicates the line search converged and will pivot.
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The <GradientDescent> node recognizes the following parameters:

• verbosity: [silent, quiet, all, debug], optional, Desired verbosity of messages coming
from this entity

• name: string, required, User-defined name to designate this entity in the RAVEN input file.

The <GradientDescent> node recognizes the following subnodes:

• <objective>: string, Name of the response variable (or “objective function”) that should
be optimized (minimized or maximized).

• <variable>: defines the input space variables to be sampled through various means. The
<variable> node recognizes the following parameters:

– name: string, optional, user-defined name of this Sampler. Note: As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks

– shape: comma-separated integers, optional, determines the number of samples and
shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3 matrix
of values, while shape=“10” will produce a vector of 10 values. Omitting this optional
attribute will result in a single scalar value instead. Each of the values in the matrix or
vector will be the same as the single sampled value. Note: A model interface must be
prepared to handle non-scalar inputs to use this option.

The <variable> node recognizes the following subnodes:

– <distribution>: string, name of the distribution that is associated to this vari-
able. Its name needs to be contained in the <Distributions> block explained
in Section 9. In addition, if NDDistribution is used, the attribute dim is required.
Note: Alternatively, this node must be omitted if the <function> node is supplied.

The <distribution> node recognizes the following parameters:

* dim: integer, optional, for an NDDistribution, indicates the dimension within the
NDDistribution that corresponds to this variable.

– <grid>: string, – no description yet – The <grid> node recognizes the following
parameters:

* type: string, optional, – no description yet –

* construction: string, optional, – no description yet –

* steps: integer, optional, – no description yet –

180



– <function>: string, name of the function that defines the calculation of this variable
from other distributed variables. Its name needs to be contained in the <Functions>
block explained in Section 16. This function must implement a method named “evalu-
ate”. Note: Each <variable>must contain only one <Function> or <Distribution>,
but not both.

– <initial>: comma-separated floats, indicates the initial values where independent
trajectories for this optimization effort should begin. The number of entries should be
the same for all variables, unless a variable is initialized with a sampler (see <samplerInit>
below). Note these entries are ordered; that is, if the optimization variables are x and y,
and the initial values for x are ’1, 2, 3, 4’ and initial values for y are ’5, 6,
7, 8’, then there will be four starting trajectories beginning at the locations (1, 5), (2,
6), (3, 7), and (4, 8).

• <TargetEvaluation>: string, name of the DataObject where the sampled outputs of
the Model will be collected. This DataObject is the means by which the sampling entity
obtains the results of requested samples, and so should require all the input and output vari-
ables needed for adaptive sampling. The <TargetEvaluation> node recognizes the
following parameters:

– class: string, required, RAVEN class for this entity (e.g. Samplers, Models, DataOb-
jects)

– type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

• <samplerInit>: collection of nodes that describe the initialization of the optimization
algorithm.

The <samplerInit> node recognizes the following subnodes:

– <limit>: integer, limits the number of Model evaluations that may be performed as
part of this optimization. For example, a limit of 100 means at most 100 total Model
evaluations may be performed.

– <writeSteps>: [final, every], delineates when the <SolutionExport>DataOb-
ject should be written to. In case of ’final’, only the final optimal solution for each
trajectory will be written. In case of ’every’, the <SolutionExport> will be
updated with each iteration of the Optimizer.

– <initialSeed>: integer, seed for random number generation. Note that by default
RAVEN uses an internal seed, so this seed must be changed to observe changed behav-
ior.
Default: RAVEN-determined

– <type>: [min, max], the type of optimization to perform. ’min’ will search for the
lowest <objective> value, while ’max’ will search for the highest value.
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• <gradient>: a required node containing the information about which gradient approxi-
mation algorithm to use, and its settings if applicable. Exactly one of the gradient approxi-
mation algorithms below may be selected for this Optimizer.

The <gradient> node recognizes the following subnodes:

– <FiniteDifference>: if node is present, indicates that gradient approximation
should be performed using Finite Difference approximation. Finite difference makes
use of orthogonal perturbations in each dimension of the input space to estimate the
local gradient, requiring a total of N perturbations, where N is dimensionality of the
input space. For example, if the input space i = (x, y, z) for objective function f(i),
then FiniteDifference chooses three perturbations (α, β, γ) and evaluates the following
perturbation points:

* f(x+ α, y, z),

* f(x, y + β, z),

* f(x, y, z + γ)

and evaluates the gradient∇f = (∇(x)f,∇(y)f,∇(z)f) as

∇(x)f ≈ f(x+ α, y, z)− f(x, y, z)

α
,

and so on for∇(y)f and∇(z)f .

– <CentralDifference>: if node is present, indicates that gradient approxima-
tion should be performed using Central Difference approximation. Central difference
makes use of pairs of orthogonal perturbations in each dimension of the input space to
estimate the local gradient, requiring a total of 2N perturbations, where N is dimen-
sionality of the input space. For example, if the input space i = (x, y, z) for objective
function f(i), then CentralDifference chooses three perturbations (α, β, γ) and evalu-
ates the following perturbation points:

* f(x± α, y, z),

* f(x, y ± β, z),

* f(x, y, z ± γ)

and evaluates the gradient∇f = (∇(x)f,∇(y)f,∇(z)f) as

∇(x)f ≈ f(x+ α, y, z)− f(x− α, y, z)
2α

,

and so on for∇(y)f and ∇(z)f .

– <SPSA>: if node is present, indicates that gradient approximation should be performed
using the Simultaneous Perturbation Stochastic Approximation (SPSA). SPSA makes
use of a single perturbation as a zeroth-order gradient approximation, requiring exactly
1 perturbation regardless of the dimensionality of the input space. For example, if
the input space i = (x, y, z) for objective function f(i), then SPSA chooses a single
perturbation point (ε(x), ε(y), ε(z)) and evaluates the following perturbation point:
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* f(x+ ε(x), y + ε(y), z + ε(z))

and evaluates the gradient∇f = (∇(x)f,∇(y)f,∇(z)f) as

∇(x)f ≈ f(x+ ε(x), y + ε(y), z + ε(z)))− f(x, y, z)

ε(x)
,

and so on for∇(y)f and∇(z)f . This approximation is much less robust than FiniteDif-
ference or CentralDifference, but has the benefit of being dimension agnostic.

• <stepSize>: a required node containing the information about which iterative stepping
algorithm to use, and its settings if applicable. Exactly one of the stepping algorithms below
may be selected for this Optimizer.

The <stepSize> node recognizes the following subnodes:

– <GradientHistory>: if this node is present, indicates that the iterative steps in the
gradient descent algorithm should be determined by the sequential change in gradient.
In particular, rather than using the magnitude of the gradient to determine step size, the
directional change of the gradient versor determines whether to take larger or smaller
steps. If the gradient in two successive steps changes direction, the step size shrinks.
If the gradient instead continues in the same direction, the step size grows. The rate of
shrink and growth are controlled by the <shrinkFactor> and <growthFactor>.
Note these values have a large impact on the optimization path taken. Large growth fac-
tors converge slowly but explore more of the input space; large shrink factors converge
quickly but might converge before arriving at a local minimum.
The <GradientHistory> node recognizes the following subnodes:

* <growthFactor>: float, specifies the rate at which the step size should grow
if the gradient continues in same direction through multiple iterative steps. For
example, a growth factor of 2 means that if the gradient is identical twice, the step
size is doubled.
Default: 1.25

* <shrinkFactor>: float, specifies the rate at which the step size should shrink
if the gradient changes direction through multiple iterative steps. For example, a
shrink factor of 2 means that if the gradient completely flips direction, the step size
is halved. Note that for stochastic surfaces or low-order gradient approximations
such as SPSA, a small value for the shrink factor is recommended. If an opti-
mization path appears to be converging early, increasing the shrink factor might
improve the search.
Default: 1.15

– <ConjugateGradient>: Base class for Step Manipulation algorithms in the Gra-
dientDescent Optimizer.

• <acceptance>: a required node containing the information about the acceptability cri-
terion for iterative optimization steps, i.e. when a potential new optimal point should be
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rejected and when it can be accepted. Exactly one of the acceptance criteria below may be
selected for this Optimizer.

The <acceptance> node recognizes the following subnodes:

– <Strict>: if this node is present, indicates that a Strict acceptance policy for po-
tential new optimal points should be enforced; that is, for a potential optimal point to
become the new point from which to take another iterative optimizer step, the new re-
sponse value must be improved over the old response value. Otherwise, the potential
opt point is rejected and the search continues with the previously-discovered optimal
point.

• <convergence>: a node containing the desired convergence criteria for the optimization
algorithm. Note that convergence is met when any one of the convergence criteria is met. If
no convergence criteria are given, then nominal convergence on gradient value is used.

The <convergence> node recognizes the following subnodes:

– <gradient>: float, provides the desired value for the local estimated of the gradient
for convergence.
Default: 1e-6, if no criteria specified

– <objective>: float, provides the maximum relative change in the objective function
for convergence.

– <stepSize>: float, provides the maximum size in relative step size for convergence.

– <terminateFollowers>: [True, Yes, 1, False, No, 0, t, y, 1, f, n, 0], indicates
whether a trajectory should be terminated when it begins following the path of another
trajectory. The <terminateFollowers> node recognizes the following parame-
ters:

* proximity: float, optional, provides the normalized distance at which a trajec-
tory’s head should be proximal to another trajectory’s path before terminating the
following trajectory.

– <persistence>: integer, provides the number of consecutive times convergence
should be reached before a trajectory is considered fully converged. This helps in
preventing early false convergence.

– <constraintExplorationLimit>: integer, provides the number of consecu-
tive times a functional constraint boundary can be explored for an acceptable sampling
point before aborting search. Only apples if using a <Constraint>.
Default: 500

• <constant>: comma-separated strings, integers, and floats, allows variables that do not
change value to be part of the input space. The <constant> node recognizes the following
parameters:
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– name: string, required, variable name for this constant, which will be provided to the
Model.

– shape: comma-separated integers, optional, determines the shape of samples of the
constant value. For example, shape=“2,3” will shape the values into a 2 by 3 matrix,
while shape=“10” will shape into a vector of 10 values. Unlike the <variable>,
the constant requires each value be entered; the number of required values is equal to
the product of the shape values, e.g. 6 entries for shape “2,3”). Note: A model
interface must be prepared to handle non- scalar inputs to use this option.

– source: string, optional, the name of the DataObject containing the value to be
used for this constant. Requires <ConstantSource> node with a <DataObject>
identified for this Sampler/Optimizer.

– index: integer, optional, the index of the realization in the <ConstantSource>
<DataObject> containing the value for this constant. Requires <ConstantSource>
node with a <DataObject> identified for this Sampler/Optimizer.

• <ConstantSource>: string, identifies a <DataObject> to provide <constant>
values to the input space of this entity while sampling. As an alternative to providing prede-
fined values for constants, the <ConstantSource> provides a dynamic means of always
providing the same value for a constant. This is often used as part of a larger multi-workflow
calculation. The <ConstantSource> node recognizes the following parameters:

– class: string, optional, The RAVEN class for this source. Options include ’DataObject’.

– type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

• <Constraint>: string, name of <Function> which contains explicit constraints for
the sampling of the input space of the Model. From a practical point of view, this XML node
must contain the name of a function defined in the <Functions> block (see Section 16).
This external function must contain a method called “constrain”, which returns True for
inputs satisfying the explicit constraints and False otherwise. The <Constraint> node
recognizes the following parameters:

– class: string, required, RAVEN class for this source. Options include ’Functions’.

– type: string, required, RAVEN type for this source. Options include <External>.

• <ImplicitConstraint>: string, name of <Function> which contains implicit con-
straints of the Model. From a practical point of view, this XML node must contain the name
of a function defined in the <Functions> block (see Section 16). This external function
must contain a method called “implicitConstrain”, which returns True for outputs satisfy-
ing the implicit constraints and False otherwise. The <ImplicitConstraint> node
recognizes the following parameters:

– class: string, required, RAVEN class for this source. Options include ’Functions’.
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– type: string, required, RAVEN type for this source. Options include <External>.

• <Sampler>: string, name of a Sampler that can be used to initialize the starting points
for the trajectories of some of the variables. From a practical point of view, this XML node
must contain the name of a Sampler defined in the <Samplers> block (see Section 10.1).
The Sampler will be used to initialize the trajectories’ initial points for some or all of the
variables. For example, if the Sampler selected samples only 2 of the 5 optimization vari-
ables, the <initial> XML node is required only for the remaining 3 variables. The
<Sampler> node recognizes the following parameters:

– class: string, required, RAVEN class for this entity (e.g. Samplers, Models, DataOb-
jects)

– type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

• <Restart>: string, name of a DataObject. Used to leverage existing data when sampling
a model. For example, if a Model has already been sampled, but some samples were not
collected, the successful samples can be stored and used instead of rerunning the model for
those specific samples. This RAVEN entity definition must be a DataObject with contents
including the input and output spaces of the Model being sampled. The <Restart> node
recognizes the following parameters:

– class: string, optional, The RAVEN class for this source. Options include ’DataObject’.

– type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

• <restartTolerance>: float, specifies how strictly a matching point from a <Restart>
DataObject must match the desired sample point in order to be used. If a potential restart
point is within a relative Euclidean distance (as specified by the value in this node) of a de-
sired sample point, the restart point will be used instead of sampling the Model.
Default: 1e-15

• <variablesTransformation>: Allows transformation of variables via translation
matrices. This defines two spaces, a “latent” transformed space sampled by RAVEN and a
“manifest” original space understood by the Model. The <variablesTransformation>
node recognizes the following parameters:

– distribution: string, optional, the name for the distribution defined in the XML
node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.

The <variablesTransformation> node recognizes the following subnodes:

– <latentVariables>: comma-separated strings, user-defined latent variables that
are used for the variables transformation. All the variables listed under this node should
be also mentioned in <variable>.
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– <manifestVariables>: comma-separated strings, user-defined manifest vari-
ables that can be used by the <Model>.

– <manifestVariablesIndex>: comma-separated strings, user-defined manifest
variables indices paired with <manifestVariables>. These indices indicate the
position of manifest variables associated with multivariate normal distribution defined
in the XML node <Distributions>. The indices should be postive integer. If not
provided, the code will use the positions of manifest variables listed in <manifestVariables>
as the indices.

– <method>: string, the method that is used for the variables transformation. The
currently available method is ’pca’.

Gradient Descent Example:

<Optimizers>
...
<GradientDescent name="opter">

<objective>ans</objective>
<variable name="x">

<distribution>x_dist</distribution>
<initial>-2</initial>

</variable>
<variable name="y">

<distribution>y_dist</distribution>
<initial>2</initial>

</variable>
<samplerInit>

<limit>100</limit>
</samplerInit>
<gradient>

<FiniteDifference/>
</gradient>
<stepSize>

<GradientHistory/>
</stepSize>
<acceptance>

<Strict/>
</acceptance>
<TargetEvaluation class="DataObjects"

type="PointSet">optOut</TargetEvaluation>
</GradientDescent>
...

</Optimizers>
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11.2 SimulatedAnnealing

The <SimulatedAnnealing> optimizer is a metaheuristic approach to perform a global search
in large design spaces. The methodology rose from statistical physics and was inspitred by metal-
lurgy where it was found that fast cooling might lead to smaller and defected crystals, and that re-
heating and slowly controling cooling will lead to better states. This allows climbing to avoid being
stuck in local minima and hence facilitates finding the global minima for non-convex probloems.
More information can be found in: Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983). “Opti-
mization by Simulated Annealing”. Science. 220 (4598): 671–680.

When used as part of a <MultiRun> step, this entity provides additional information through
the <SolutionExport> DataObject. The following variables can be requested within the
<SolutionExport>:

• trajID: integer identifier for different optimization starting locations and paths

• iteration: integer identifying which iteration (or step, or generation) a trajectory is on

• accepted: string acceptance status of the potential optimal point (algorithm dependent)

• rejectReason: discription of reject reason, ’noImprovement’ means rejected the new
optimization point for no improvement from last point, ’implicitConstraintsViolation’ means
rejected by implicit constraints violation, return None if the point is accepted

• {VAR}: any variable from the <TargetEvaluation> input or output; gives the value of
that variable at the optimal candidate for this iteration.

• conv {CONV}: status of each given convergence criteria

• amp {VAR}: amplitued associated to each variable used to compute step size based on cool-
ing method and the corresponding next neighbour

• delta {VAR}: step size associated to each variable

• Temp: temperature at current state

• fraction: current fraction of the max iteration limit

The <SimulatedAnnealing> node recognizes the following parameters:

• verbosity: [silent, quiet, all, debug], optional, Desired verbosity of messages coming
from this entity

• name: string, required, User-defined name to designate this entity in the RAVEN input file.
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The <SimulatedAnnealing> node recognizes the following subnodes:

• <objective>: string, Name of the response variable (or “objective function”) that should
be optimized (minimized or maximized).

• <variable>: defines the input space variables to be sampled through various means. The
<variable> node recognizes the following parameters:

– name: string, optional, user-defined name of this Sampler. Note: As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks

– shape: comma-separated integers, optional, determines the number of samples and
shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3 matrix
of values, while shape=“10” will produce a vector of 10 values. Omitting this optional
attribute will result in a single scalar value instead. Each of the values in the matrix or
vector will be the same as the single sampled value. Note: A model interface must be
prepared to handle non-scalar inputs to use this option.

The <variable> node recognizes the following subnodes:

– <distribution>: string, name of the distribution that is associated to this vari-
able. Its name needs to be contained in the <Distributions> block explained
in Section 9. In addition, if NDDistribution is used, the attribute dim is required.
Note: Alternatively, this node must be omitted if the <function> node is supplied.

The <distribution> node recognizes the following parameters:

* dim: integer, optional, for an NDDistribution, indicates the dimension within the
NDDistribution that corresponds to this variable.

– <grid>: string, – no description yet – The <grid> node recognizes the following
parameters:

* type: string, optional, – no description yet –

* construction: string, optional, – no description yet –

* steps: integer, optional, – no description yet –

– <function>: string, name of the function that defines the calculation of this variable
from other distributed variables. Its name needs to be contained in the <Functions>
block explained in Section 16. This function must implement a method named “evalu-
ate”. Note: Each <variable>must contain only one <Function> or <Distribution>,
but not both.

– <initial>: comma-separated floats, indicates the initial values where independent
trajectories for this optimization effort should begin. The number of entries should be
the same for all variables, unless a variable is initialized with a sampler (see <samplerInit>
below). Note these entries are ordered; that is, if the optimization variables are x and y,
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and the initial values for x are ’1, 2, 3, 4’ and initial values for y are ’5, 6,
7, 8’, then there will be four starting trajectories beginning at the locations (1, 5), (2,
6), (3, 7), and (4, 8).

• <TargetEvaluation>: string, name of the DataObject where the sampled outputs of
the Model will be collected. This DataObject is the means by which the sampling entity
obtains the results of requested samples, and so should require all the input and output vari-
ables needed for adaptive sampling. The <TargetEvaluation> node recognizes the
following parameters:

– class: string, required, RAVEN class for this entity (e.g. Samplers, Models, DataOb-
jects)

– type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

• <samplerInit>: collection of nodes that describe the initialization of the optimization
algorithm.

The <samplerInit> node recognizes the following subnodes:

– <limit>: integer, limits the number of Model evaluations that may be performed as
part of this optimization. For example, a limit of 100 means at most 100 total Model
evaluations may be performed.

– <writeSteps>: [final, every], delineates when the <SolutionExport>DataOb-
ject should be written to. In case of ’final’, only the final optimal solution for each
trajectory will be written. In case of ’every’, the <SolutionExport> will be
updated with each iteration of the Optimizer.

– <initialSeed>: integer, seed for random number generation. Note that by default
RAVEN uses an internal seed, so this seed must be changed to observe changed behav-
ior.
Default: RAVEN-determined

– <type>: [min, max], the type of optimization to perform. ’min’ will search for the
lowest <objective> value, while ’max’ will search for the highest value.

• <convergence>: a node containing the desired convergence criteria for the optimization
algorithm. Note that convergence is met when any one of the convergence criteria is met. If
no convergence criteria are given, then the defaults are used.

The <convergence> node recognizes the following subnodes:

– <objective>: float, provides the desired value for the convergence criterion of the
objective function (εobj), i.e., convergence is reached when:

|newObjevtive− oldObjective| ≤ εobj

.
Default: 1e-6, if no criteria specified
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– <temperature>: float, provides the desired value for the convergence creiteron of
the system temperature, (εtemp), i.e., convergence is reached when:

T ≤ εtemp

.
Default: 1e-10, if no criteria specified

– <persistence>: integer, provides the number of consecutive times convergence
should be reached before a trajectory is considered fully converged. This helps in
preventing early false convergence.

• <coolingSchedule>: The function governing the cooling process. Currently, user can
select between,’exponential’, ’cauchy’, ’boltzmann’,or ’veryfast’.

In case of ’exponential’ is provided, The cooling process will be governed by:

T k = T 0 ∗ αk

In case of ’boltzmann’ is provided, The cooling process will be governed by:

T k =
T 0

log(k + d)

In case of ’cauchy’ is provided, The cooling process will be governed by:

T k =
T 0

k + d

In case of ’veryfast’ is provided, The cooling process will be governed by:

T k = T 0 ∗ exp(−ck1/D),

where D is the dimentionality of the problem (i.e., number of optimized variables), k is the
number of the current iteration T 0 = max (0.01, 1− k

<limit>) is the initial temperature, and
T k is the current temperature according to the specified cooling schedule.
Default: exponential.

The <coolingSchedule> node recognizes the following subnodes:

– <exponential>: string, exponential cooling schedule
The <exponential> node recognizes the following subnodes:

* <alpha>: float, slowing down constant, should be between 0,1 and preferable
very close to 1.
Default: 0.94

– <veryfast>: string, veryfast cooling schedule
The <veryfast> node recognizes the following subnodes:
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* <c>: float, decay constant,
Default: 1.0

– <cauchy>: string, cauchy cooling schedule
The <cauchy> node recognizes the following subnodes:

* <d>: float, bias,
Default: 1.0

– <boltzmann>: string, boltzmann cooling schedule
The <boltzmann> node recognizes the following subnodes:

* <d>: float, bias,
Default: 1.0

• <constant>: comma-separated strings, integers, and floats, allows variables that do not
change value to be part of the input space. The <constant> node recognizes the following
parameters:

– name: string, required, variable name for this constant, which will be provided to the
Model.

– shape: comma-separated integers, optional, determines the shape of samples of the
constant value. For example, shape=“2,3” will shape the values into a 2 by 3 matrix,
while shape=“10” will shape into a vector of 10 values. Unlike the <variable>,
the constant requires each value be entered; the number of required values is equal to
the product of the shape values, e.g. 6 entries for shape “2,3”). Note: A model
interface must be prepared to handle non- scalar inputs to use this option.

– source: string, optional, the name of the DataObject containing the value to be
used for this constant. Requires <ConstantSource> node with a <DataObject>
identified for this Sampler/Optimizer.

– index: integer, optional, the index of the realization in the <ConstantSource>
<DataObject> containing the value for this constant. Requires <ConstantSource>
node with a <DataObject> identified for this Sampler/Optimizer.

• <ConstantSource>: string, identifies a <DataObject> to provide <constant>
values to the input space of this entity while sampling. As an alternative to providing prede-
fined values for constants, the <ConstantSource> provides a dynamic means of always
providing the same value for a constant. This is often used as part of a larger multi-workflow
calculation. The <ConstantSource> node recognizes the following parameters:

– class: string, optional, The RAVEN class for this source. Options include ’DataObject’.

– type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.
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• <Constraint>: string, name of <Function> which contains explicit constraints for
the sampling of the input space of the Model. From a practical point of view, this XML node
must contain the name of a function defined in the <Functions> block (see Section 16).
This external function must contain a method called “constrain”, which returns True for
inputs satisfying the explicit constraints and False otherwise. The <Constraint> node
recognizes the following parameters:

– class: string, required, RAVEN class for this source. Options include ’Functions’.

– type: string, required, RAVEN type for this source. Options include <External>.

• <ImplicitConstraint>: string, name of <Function> which contains implicit con-
straints of the Model. From a practical point of view, this XML node must contain the name
of a function defined in the <Functions> block (see Section 16). This external function
must contain a method called “implicitConstrain”, which returns True for outputs satisfy-
ing the implicit constraints and False otherwise. The <ImplicitConstraint> node
recognizes the following parameters:

– class: string, required, RAVEN class for this source. Options include ’Functions’.

– type: string, required, RAVEN type for this source. Options include <External>.

• <Sampler>: string, name of a Sampler that can be used to initialize the starting points
for the trajectories of some of the variables. From a practical point of view, this XML node
must contain the name of a Sampler defined in the <Samplers> block (see Section 10.1).
The Sampler will be used to initialize the trajectories’ initial points for some or all of the
variables. For example, if the Sampler selected samples only 2 of the 5 optimization vari-
ables, the <initial> XML node is required only for the remaining 3 variables. The
<Sampler> node recognizes the following parameters:

– class: string, required, RAVEN class for this entity (e.g. Samplers, Models, DataOb-
jects)

– type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

• <Restart>: string, name of a DataObject. Used to leverage existing data when sampling
a model. For example, if a Model has already been sampled, but some samples were not
collected, the successful samples can be stored and used instead of rerunning the model for
those specific samples. This RAVEN entity definition must be a DataObject with contents
including the input and output spaces of the Model being sampled. The <Restart> node
recognizes the following parameters:

– class: string, optional, The RAVEN class for this source. Options include ’DataObject’.

– type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.
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• <restartTolerance>: float, specifies how strictly a matching point from a <Restart>
DataObject must match the desired sample point in order to be used. If a potential restart
point is within a relative Euclidean distance (as specified by the value in this node) of a de-
sired sample point, the restart point will be used instead of sampling the Model.
Default: 1e-15

• <variablesTransformation>: Allows transformation of variables via translation
matrices. This defines two spaces, a “latent” transformed space sampled by RAVEN and a
“manifest” original space understood by the Model. The <variablesTransformation>
node recognizes the following parameters:

– distribution: string, optional, the name for the distribution defined in the XML
node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.

The <variablesTransformation> node recognizes the following subnodes:

– <latentVariables>: comma-separated strings, user-defined latent variables that
are used for the variables transformation. All the variables listed under this node should
be also mentioned in <variable>.

– <manifestVariables>: comma-separated strings, user-defined manifest vari-
ables that can be used by the <Model>.

– <manifestVariablesIndex>: comma-separated strings, user-defined manifest
variables indices paired with <manifestVariables>. These indices indicate the
position of manifest variables associated with multivariate normal distribution defined
in the XML node <Distributions>. The indices should be postive integer. If not
provided, the code will use the positions of manifest variables listed in <manifestVariables>
as the indices.

– <method>: string, the method that is used for the variables transformation. The
currently available method is ’pca’.

Simulated Annealing Example:

<Optimizers>
...
<SimulatedAnnealing name="simOpt">

<samplerInit>
<limit>2000</limit>
<initialSeed>42</initialSeed>
<writeSteps>every</writeSteps>
<type>min</type>

</samplerInit>
<convergence>
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<objective>1e-6</objective>
<temperature>1e-20</temperature>
<persistence>1</persistence>

</convergence>
<coolingSchedule>
<exponential>

<alpha>0.94</alpha>
</exponential>

</coolingSchedule>
<variable name="x">
<distribution>beale_dist</distribution>
<initial>-2.5</initial>

</variable>
<variable name="y">
<distribution>beale_dist</distribution>
<initial>3.5</initial>

</variable>
<objective>ans</objective>
<TargetEvaluation class="DataObjects"

type="PointSet">optOut</TargetEvaluation>
</SimulatedAnnealing>
...

</Optimizers>

11.3 GeneticAlgorithm

The <GeneticAlgorithm> optimizer is a metaheuristic approach to perform a global search
in large design spaces. The methodology rose from the process of natural selection, and like others
in the large class of the evolutionary algorithms, it utilizes genetic operations such as selection,
crossover, and mutations to avoid being stuck in local minima and hence facilitates finding the
global minima. More information can be found in: Holland, John H. ”Genetic algorithms.” Scien-
tific american 267.1 (1992): 66-73.

When used as part of a <MultiRun> step, this entity provides additional information through
the <SolutionExport> DataObject. The following variables can be requested within the
<SolutionExport>:

• trajID: integer identifier for different optimization starting locations and paths

• iteration: integer identifying which iteration (or step, or generation) a trajectory is on

• accepted: string acceptance status of the potential optimal point (algorithm dependent)
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• rejectReason: discription of reject reason, ‘noImprovement’ means rejected the new
optimization point for no improvement from last point, ‘implicitConstraintsViolation’ means
rejected by implicit constraints violation, return None if the point is accepted

• {VAR}: any variable from the <TargetEvaluation> input or output; gives the value of
that variable at the optimal candidate for this iteration.

• conv {CONV}: status of each given convergence criteria

• fitness: fitness of the current chromosome

• age: age of current chromosome

• batchId: Id of the batch to whom the chromosome belongs

The <GeneticAlgorithm> node recognizes the following parameters:

• verbosity: [silent, quiet, all, debug], optional, Desired verbosity of messages coming
from this entity

• name: string, required, User-defined name to designate this entity in the RAVEN input file.

The <GeneticAlgorithm> node recognizes the following subnodes:

• <objective>: string, Name of the response variable (or “objective function”) that should
be optimized (minimized or maximized).

• <variable>: defines the input space variables to be sampled through various means. The
<variable> node recognizes the following parameters:

– name: string, optional, user-defined name of this Sampler. Note: As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks

– shape: comma-separated integers, optional, determines the number of samples and
shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3 matrix
of values, while shape=“10” will produce a vector of 10 values. Omitting this optional
attribute will result in a single scalar value instead. Each of the values in the matrix or
vector will be the same as the single sampled value. Note: A model interface must be
prepared to handle non-scalar inputs to use this option.

The <variable> node recognizes the following subnodes:
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– <distribution>: string, name of the distribution that is associated to this vari-
able. Its name needs to be contained in the <Distributions> block explained
in Section 9. In addition, if NDDistribution is used, the attribute dim is required.
Note: Alternatively, this node must be omitted if the <function> node is supplied.

The <distribution> node recognizes the following parameters:

* dim: integer, optional, for an NDDistribution, indicates the dimension within the
NDDistribution that corresponds to this variable.

– <grid>: string, – no description yet – The <grid> node recognizes the following
parameters:

* type: string, optional, – no description yet –

* construction: string, optional, – no description yet –

* steps: integer, optional, – no description yet –
– <function>: string, name of the function that defines the calculation of this variable

from other distributed variables. Its name needs to be contained in the <Functions>
block explained in Section 16. This function must implement a method named “evalu-
ate”. Note: Each <variable>must contain only one <Function> or <Distribution>,
but not both.

– <initial>: comma-separated floats, indicates the initial values where independent
trajectories for this optimization effort should begin. The number of entries should be
the same for all variables, unless a variable is initialized with a sampler (see <samplerInit>
below). Note these entries are ordered; that is, if the optimization variables are x and y,
and the initial values for x are ’1, 2, 3, 4’ and initial values for y are ’5, 6,
7, 8’, then there will be four starting trajectories beginning at the locations (1, 5), (2,
6), (3, 7), and (4, 8).

• <TargetEvaluation>: string, name of the DataObject where the sampled outputs of
the Model will be collected. This DataObject is the means by which the sampling entity
obtains the results of requested samples, and so should require all the input and output vari-
ables needed for adaptive sampling. The <TargetEvaluation> node recognizes the
following parameters:

– class: string, required, RAVEN class for this entity (e.g. Samplers, Models, DataOb-
jects)

– type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

• <samplerInit>: collection of nodes that describe the initialization of the optimization
algorithm.

The <samplerInit> node recognizes the following subnodes:

– <limit>: integer, limits the number of Model evaluations that may be performed as
part of this optimization. For example, a limit of 100 means at most 100 total Model
evaluations may be performed.
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– <writeSteps>: [final, every], delineates when the <SolutionExport>DataOb-
ject should be written to. In case of ’final’, only the final optimal solution for each
trajectory will be written. In case of ’every’, the <SolutionExport> will be
updated with each iteration of the Optimizer.

– <initialSeed>: integer, seed for random number generation. Note that by default
RAVEN uses an internal seed, so this seed must be changed to observe changed behav-
ior.
Default: RAVEN-determined

– <type>: [min, max], the type of optimization to perform. ’min’ will search for the
lowest <objective> value, while ’max’ will search for the highest value.

• <GAparams>: Genetic Algorithm Parameters:

– populationSize.

– parentSelectors:

* rouletteWheel.

* tournamentSelection.

* rankSelection.

– Reproduction:

* crossover:
· onePointCrossover.
· twoPointsCrossover.
· uniformCrossover

* mutators:
· swapMutator.
· scrambleMutator.
· inversionMutator.
· bitFlipMutator.

– survivorSelectors:

* ageBased.

* fitnessBased.

The <GAparams> node recognizes the following subnodes:

– <populationSize>: integer, The number of chromosomes in each population.

– <parentSelection>: string, A node containing the criterion based on which the
parents are selected. This can be a fitness proportionate selection such as: a. roulette-
Wheel, b. stochasticUniversalSampling, c. Tournament, d. Rank, or e. randomSe-
lection
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– <reproduction>: a node containing the reproduction methods. This accepts subn-
odes that specifies the types of crossover and mutation. The <reproduction> node
recognizes the following parameters:

* nParents: integer, required, – no description yet –

The <reproduction> node recognizes the following subnodes:

* <crossover>: string, a subnode containing the implemented crossover mecha-
nisms. This includes: a. One Point Crossover, b. MultiPoint Crossover, c. Uniform
Crossover, d. Whole Arithmetic Recombination, or e. Davis’ Order Crossover.
The <crossover> node recognizes the following parameters:

· type: string, required, – no description yet –
The <crossover> node recognizes the following subnodes:

· <points>: comma-separated integers, point/gene(s) at which crossover
will occur.

· <crossoverProb>: float, The probability governing the crossover occu-
rance, i.e., the probability that if exceeded crossover will ocur.

* <mutation>: string, a subnode containing the implemented mutation mecha-
nisms. This includes: a. Bit Flip, b. Random Resetting, c. Swap, d. Scramble, or
e. Inversion. The <mutation> node recognizes the following parameters:

· type: string, required, – no description yet –
The <mutation> node recognizes the following subnodes:

· <locs>: comma-separated integers, locations at which mutation will occur.
· <mutationProb>: float, The probability governing the mutation occu-

rance, i.e., the probability that if exceeded mutation will ocur.

– <survivorSelection>: string, a subnode containing the implemented servivor
selection mechanisms. This includes: a. ageBased, or b. fitnessBased.

– <fitness>: string, a subnode containing the implemented fitness functions. This
includes: a. invLinear: fitness = 1

a×obj+b×penalty . b. logistic: fitness = 1
1+ea×(obj−b)

The <fitness> node recognizes the following parameters:

* type: string, required, [invLin, logistic]

The <fitness> node recognizes the following subnodes:

* <a>: float, a: coefficient of objective function.

* <b>: float, b: coefficient of constraint penalty.

• <convergence>: a node containing the desired convergence criteria for the optimization
algorithm. Note that convergence is met when any one of the convergence criteria is met. If
no convergence criteria are given, then the defaults are used.

The <convergence> node recognizes the following subnodes:
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– <objective>: float, provides the desired value for the convergence criterion of the
objective function (εobj). In essence this is solving the inverse problem of finding the
design variable at a given objective value, i.e., convergence is reached when:

Objevtive = εobj

.
Default: 1e-6, if no criteria specified

– <persistence>: integer, provides the number of consecutive times convergence
should be reached before a trajectory is considered fully converged. This helps in
preventing early false convergence.

• <constant>: comma-separated strings, integers, and floats, allows variables that do not
change value to be part of the input space. The <constant> node recognizes the following
parameters:

– name: string, required, variable name for this constant, which will be provided to the
Model.

– shape: comma-separated integers, optional, determines the shape of samples of the
constant value. For example, shape=“2,3” will shape the values into a 2 by 3 matrix,
while shape=“10” will shape into a vector of 10 values. Unlike the <variable>,
the constant requires each value be entered; the number of required values is equal to
the product of the shape values, e.g. 6 entries for shape “2,3”). Note: A model
interface must be prepared to handle non- scalar inputs to use this option.

– source: string, optional, the name of the DataObject containing the value to be
used for this constant. Requires <ConstantSource> node with a <DataObject>
identified for this Sampler/Optimizer.

– index: integer, optional, the index of the realization in the <ConstantSource>
<DataObject> containing the value for this constant. Requires <ConstantSource>
node with a <DataObject> identified for this Sampler/Optimizer.

• <ConstantSource>: string, identifies a <DataObject> to provide <constant>
values to the input space of this entity while sampling. As an alternative to providing prede-
fined values for constants, the <ConstantSource> provides a dynamic means of always
providing the same value for a constant. This is often used as part of a larger multi-workflow
calculation. The <ConstantSource> node recognizes the following parameters:

– class: string, optional, The RAVEN class for this source. Options include ’DataObject’.

– type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

• <Constraint>: string, name of <Function> which contains explicit constraints for
the sampling of the input space of the Model. From a practical point of view, this XML node
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must contain the name of a function defined in the <Functions> block (see Section 16).
This external function must contain a method called “constrain”, which returns True for
inputs satisfying the explicit constraints and False otherwise. The <Constraint> node
recognizes the following parameters:

– class: string, required, RAVEN class for this source. Options include ’Functions’.

– type: string, required, RAVEN type for this source. Options include <External>.

• <ImplicitConstraint>: string, name of <Function> which contains implicit con-
straints of the Model. From a practical point of view, this XML node must contain the name
of a function defined in the <Functions> block (see Section 16). This external function
must contain a method called “implicitConstrain”, which returns True for outputs satisfy-
ing the implicit constraints and False otherwise. The <ImplicitConstraint> node
recognizes the following parameters:

– class: string, required, RAVEN class for this source. Options include ’Functions’.

– type: string, required, RAVEN type for this source. Options include <External>.

• <Sampler>: string, name of a Sampler that can be used to initialize the starting points
for the trajectories of some of the variables. From a practical point of view, this XML node
must contain the name of a Sampler defined in the <Samplers> block (see Section 10.1).
The Sampler will be used to initialize the trajectories’ initial points for some or all of the
variables. For example, if the Sampler selected samples only 2 of the 5 optimization vari-
ables, the <initial> XML node is required only for the remaining 3 variables. The
<Sampler> node recognizes the following parameters:

– class: string, required, RAVEN class for this entity (e.g. Samplers, Models, DataOb-
jects)

– type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

• <Restart>: string, name of a DataObject. Used to leverage existing data when sampling
a model. For example, if a Model has already been sampled, but some samples were not
collected, the successful samples can be stored and used instead of rerunning the model for
those specific samples. This RAVEN entity definition must be a DataObject with contents
including the input and output spaces of the Model being sampled. The <Restart> node
recognizes the following parameters:

– class: string, optional, The RAVEN class for this source. Options include ’DataObject’.

– type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

• <restartTolerance>: float, specifies how strictly a matching point from a <Restart>
DataObject must match the desired sample point in order to be used. If a potential restart
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point is within a relative Euclidean distance (as specified by the value in this node) of a de-
sired sample point, the restart point will be used instead of sampling the Model.
Default: 1e-15

• <variablesTransformation>: Allows transformation of variables via translation
matrices. This defines two spaces, a “latent” transformed space sampled by RAVEN and a
“manifest” original space understood by the Model. The <variablesTransformation>
node recognizes the following parameters:

– distribution: string, optional, the name for the distribution defined in the XML
node <Distributions>. This attribute indicates the values of <manifestVariables>
are drawn from distribution.

The <variablesTransformation> node recognizes the following subnodes:

– <latentVariables>: comma-separated strings, user-defined latent variables that
are used for the variables transformation. All the variables listed under this node should
be also mentioned in <variable>.

– <manifestVariables>: comma-separated strings, user-defined manifest vari-
ables that can be used by the <Model>.

– <manifestVariablesIndex>: comma-separated strings, user-defined manifest
variables indices paired with <manifestVariables>. These indices indicate the
position of manifest variables associated with multivariate normal distribution defined
in the XML node <Distributions>. The indices should be postive integer. If not
provided, the code will use the positions of manifest variables listed in <manifestVariables>
as the indices.

– <method>: string, the method that is used for the variables transformation. The
currently available method is ’pca’.

Genetic Algorithm Example:

<Optimizers>
...
<GeneticAlgorithm name="GAopt">

<samplerInit>
<limit>50</limit>
<initialSeed>42</initialSeed>
<writeSteps>every</writeSteps>

</samplerInit>

<GAparams>
<populationSize>20</populationSize>
<parentSelection>rouletteWheel</parentSelection>
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<reproduction nParents="4">
<crossover type="onePointCrossover">

<points>3</points>
<crossoverProb>0.8</crossoverProb>

</crossover>
<mutation type="swapMutator">

<locs>2,5</locs>
<mutationProb>0.9</mutationProb>

</mutation>
</reproduction>
<fitness type="invLinear">

<a>2.0</a>
<b>1.0</b>

</fitness>
<survivorSelection>fitnessBased</survivorSelection>

</GAparams>

<convergence>
<objective>56</objective>

</convergence>

<variable name="x1">
<distribution>uniform_dist_woRepl_1</distribution>
<initial>1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20</initial>

</variable>

<variable name="x2">
<distribution>uniform_dist_woRepl_1</distribution>
<initial>2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1</initial>

</variable>

<variable name="x3">
<distribution>uniform_dist_woRepl_1</distribution>
<initial>3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2</initial>

</variable>

<variable name="x4">
<distribution>uniform_dist_woRepl_1</distribution>
<initial>4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3</initial>

</variable>

<variable name="x5">
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<distribution>uniform_dist_woRepl_1</distribution>
<initial>5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4</initial>

</variable>

<variable name="x6">
<distribution>uniform_dist_woRepl_1</distribution>
<initial>6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,5</initial>

</variable>

<objective>ans</objective>
<TargetEvaluation class="DataObjects"

type="PointSet">optOut</TargetEvaluation>
</GeneticAlgorithm>
...

</Optimizers>
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12 DataObjects

As seen in the previous chapters, different entities in the RAVEN code interact with each other in
order to create, ideally, an infinite number of different calculation flows. These interactions are
made possible through a data handling system that each entity understands. This system is called
the “DataObjects” framework.

The <DataObjects> tag is a container of data objects of various types that can be con-
structed during the execution of a particular calculation flow. These data objects can be used as
input or output for a particular Model (see Roles’ meaning in section 15), etc. Currently, RAVEN
supports 3 different data types, each with a particular conceptual meaning. These data types are
instantiated as sub-nodes in the <DataObjects> block of an input file:

• <PointSet> is a collection of individual objects, each describing the state of the system
at a certain point (e.g. in time). It can be considered a mapping between multiple sets of
parameters in the input space and the resulting sets of outcomes in the output space at a
particular point (e.g. in time).

• <HistorySet> is a collection of individual objects each describing the temporal evolution
of the state of the system within a certain input domain. It can be considered a mapping
between multiple sets of parameters in the input space and the resulting sets of temporal
evolution in the output space.

• <DataSet> is a generalization of the previously described DataObject, aimed to con-
tain a mixture of data (scalars, arrays, etc.). The variables here stored can be independent
(i.e. scalars) or dependent (arrays) on certain dimensions (e.g. time, coordinates, etc.).
It can be considered a mapping between multiple sets of parameters in the input space
(both dependent and/or independent) and the resulting sets of evolution in the output space
(both dependent and/or independent). Note: The <DataSet> is currently usable in the
<EnsembleModel> only (see 15.6 )

In summary, the DataObjects accept the following data in their input/output spaces:

Table 2: DataObjects’ accepted data formats.

DataObject Input Space Output Space
PointSet scalars scalars

HistorySet scalars vectors
DataSet any any

As noted above, each data object represents a mapping between a set of parameters and the re-
sulting outcomes. The data objects are defined within the main XML block called <DataObjects>:
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<Simulation>
...

<DataObjects>
<PointSet name='***'>...</PointSet>
<HistorySet name='***'>...</HistorySet>
<DataSet name='***'>...</DataSet>

</DataObjects>
...

</Simulation>

Independently on the type of data, the respective XML node has the following available at-
tributes:

• name, required string attribute, is a user-defined identifier for this data object. Note: As
with other objects, this name can be used to refer to this specific entity from other input
blocks in the XML.

• hierarchical, optional boolean attribute, This flag is going to “control” the printing/-
plotting of the DataObject in case a hierarchical structure is determined (e.g. data coming
from Dynamic Event Tree-like approaches):

– if True all the branches of the tree are going to be printed/plotted independently (i.e.
all the branches are going to be exposed independently)

– if False all the branches are going to be walked back and reconstructed in order to
create independent histories

Default: False

In each XML node (e.g. <PointSet>, <HistorySet> or <DataSet>), the user specifies the
following sub-nodes:

• <Input>, comma separated string, required field, lists the input parameters to which this
data is connected.

• <Output>, comma separated string, required field, lists the output parameters to which
this data is connected.

• <Index>, comma separated string, required for <DataSet>, lists the dependent vari-
ables that depend on this index (specified through the attribute var). This XML node re-
quires the following attribute:

– var, required string attribute, the dimension name of this index (e.g. time)
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• <options>, optional node, contains additional option nodes for data objects. This node
contains the following subnodes:

– <pivotParameter>, optional, string, specifies the pivotParameter for a <HistorySet>.
The pivot parameter is the shared index of the output variables in the data object.
Default: time

– <inputRow>, integer, optional field, used to specify the row (in a CSV file or HDF5
table) from which the input space needs to be retrieved (e.g. the time-step);

– <outputRow>, integer, optional field, used to specify the row (in the CSV file or
HDF5 table) from which the output space needs to be retrieved (e.g. the time-step). If
this node is inputted, the nodes <operator> and <outputPivotValue> can not
be inputted (mutually exclusive).
Note: This XML node is available for DataObjects of type <PointSet> only;

– <operator>, string, optional field, is aimed to perform simple operations on the
data to be stored. The 3 options currently available are:

* ’max’

* ’min’

* ’average’

If this node is inputted, the nodes <outputRow> and <outputPivotValue> can
not be inputted (mutually exclusive).
Note: This XML node is available for DataObjects of type <PointSet> only;

The <PointSet> and <HistorySet> objects are a specialization of the <DataSet>. In
the <PointSet>, the input and output space are all exclusively scalar values. These values might
be extracted from a vector of values for each entry using the <options> node, but the end result
is a single scalar per input or output variable.

For the <HistorySet>, all inputs must be scalar, and all outputs must share an index (the
pivotParameter. There cannot be scalars in any of the outputs. The pivotParameter can be changed
through the corresponding node in the <options> node.

Note that if the optional nodes in the block <options> are not inputted, the following default
are applied:

• the Input space (scalars) is retrieved from the first row in the CSVs files or HDF5 tables (if
the parameters specified are not among the variables sampled by RAVEN); In case of the
<DataSet>, if any of the input space variables depend on an <Index>, they are going to
be linked to the <Index> variable

• the output space defaults are as follows:

207



– if <PointSet>, the output space is retrieved from the last row in the CSVs files or
HDF5 tables;

– if <HistorySet>, the output space is represented by all the rows found in the CSVs
or HDF5 tables.

– if <DataSet>, the output space of the variables that do not depends on any index is
retrieved from the last row in the CSVs files or HDF5 tables; on the contrary, the output
space of the variables that depends on indexes is represented by all the rows found in
the CSVs or HDF5 tables (if they match with the indexes’ dimension)

<DataObjects>
<PointSet name='outTPS1'>

<options>
<inputRow>1</inputRow>
<outputRow>-1</outputRow>
</options>
<Input>pipe_Area,pipe_Dh,Dummy1</Input>
<Output>pipe_Hw,pipe_Tw,time</Output>

</PointSet>
<HistorySet name='stories1'>

<options>
<pivotParameter>TIME</pivotParameter>
<inputRow>1</inputRow>
<outputRow>-1</outputRow>

</options>
<Input>pipe_Area,pipe_Dh</Input>
<Output>pipe_Hw,pipe_Tw,time</Output>

</HistorySet>
<DataSet name='aDataSet'>

<Input>pipe_Area,pipe_Dh</Input>
<Output>pipe_Hw,pipe_Tw</Output>
<Index var="time">pipe_Hw,pipe_Tw</Index>

</DataSet>
</DataObjects>
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13 Databases

The RAVEN framework provides the capability to store and retrieve data to/from an external
database. Currently RAVEN has support for netCDF4 and HDF5 formats. NetCDF shares native
format with RAVEN’s DataObjects, but HDF5 is also included for convenience. This database,
depending on the data format it is receiving, will organize itself in a “parallel” or “hierarchical”
fashion. The user can create as many database objects as needed. The Database objects are defined
within the main XML block called <Databases>:

<Simulation>
...
<Databases>

...
<NetCDF name="aDatabaseName1" readMode="overwrite"/>
<HDF5 name="aDatabaseName2" readMode="overwrite"/>
...

</Databases>
...

</Simulation>

The specifications for these two formats are listed below.

13.1 NetCDF

The specifications of each Database of type NetCDF needs to be defined within the XML block
<NetCDF>, that recognizes the following attributes:

• name, required string attribute, a user-defined identifier of this object. Note: As with other
objects, this is name can be used to reference this specific entity from other input blocks in
the XML.

• readMode, required string attribute, defines whether an existing database should be read
when loaded (’read’) or overwritten (’overwrite’). Note: if in ’read’ mode and
the database is not found, RAVEN will read in the data as empty and raise a warning, NOT
an error.

• directory, optional string attribute, this attribute can be used to specify a particular
directory path where the database will be created or read from. If an absolute path is
given, RAVEN will respect it; otherwise, the path will be assumed to be relative to the
<WorkingDir> from the <RunInfo> block. RAVEN recognizes path expansion tools
such as tildes (user dir), single dots (current dir), and double dots (parent dir).
Default: workingDir/DatabaseStorage. The <workingDir> is the one defined within the
<RunInfo> XML block (see Section 6).
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• filename, optional string attribute, specifies the filename of the database that will be
created in the directory. Note: When this attribute is not specified, the newer database
filename will be named name.nc, where name corresponds to the name attribute of this
object.
Default: None

Example:

<Databases>
<NetCDF name="name1" directory=''path_to_a_dir''

readMode='overwrite'/>
<HDF5 name="name2" filename=''Name2.nc'' readMode='read'/>

</Databases>

13.2 HDF5

The specifications of each Database of type HDF5 needs to be defined within the XML block
<HDF5>, that recognizes the following attributes:

• name, required string attribute, a user-defined identifier of this object. Note: As with other
objects, this is name can be used to reference this specific entity from other input blocks in
the XML.

• readMode, required string attribute, defines whether an existing database should be read
when loaded (’read’) or overwritten (’overwrite’). Note: if in ’read’ mode and
the database is not found, RAVEN will read in the data as empty and raise a warning, NOT
an error.

• directory, optional string attribute, this attribute can be used to specify a particular
directory path where the database will be created or read from. If an absolute path is
given, RAVEN will respect it; otherwise, the path will be assumed to be relative to the
<WorkingDir> from the <RunInfo> block. RAVEN recognizes path expansion tools
such as tildes (user dir), single dots (current dir), and double dots (parent dir).
Default: workingDir/DatabaseStorage. The <workingDir> is the one defined within the
<RunInfo> XML block (see Section 6).

• filename, optional string attribute, specifies the filename of the HDF5 that will be created
in the directory. Note: When this attribute is not specified, the newer database filename
will be named name.h5, where name corresponds to the name attribute of this object.
Default: None

• compression, optional string attribute, compression algorithm to be used. Available are:

– ’gzip’, best where portability is required. Good compression, moderate speed.
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– ’lzf’, Low to moderate compression, very fast.

Default: None

In addition, the <HDF5> recognizes the following subnodes:

• <variables>, optional, comma-separated string, allows only a pre-specified set of vari-
ables to be included in the HDF5 when it is written to. If this node is not included, by default
the HDF5 will include ALL of the input/output variables as a result of the step it is part of.
If included, only the comma-separated variable names will be included if found.

Note: RAVEN will not error if one of the requested variables is not found; instead, it will
silently pass. It is recommended that a small trial run is performed, loading the HDF5 back
into a data object, to check that the correct variables are saved to the HDF5 before performing
large-scale calculations.

Example:

<Databases>
<HDF5 name="aDatabaseName1" directory=''path_to_a_dir''

compression=''lzf'' readMode='overwrite'/>
<HDF5 name="aDatabaseName2" filename=''aDatabaseName2.h5''

readMode='read'/>
</Databases>
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14 OutStream system

The RAVEN framework provides the capabilities to visualize and print out the data generated,
imported, and post-processed during RAVEN workflows. These capabilities are contained in the
“OutStream” system. OutStream capabilities can be broadly classified into specific categories:

• <Print>, which allows data in memory to be saved to disk;

• <Plot>, which allows plotting data according to a variety of strategies.

Default implementations exist for <Print> and <Plot>, described in Sections 14.2 and 14.3.
Other plotting strategies are described in section “Specific Plots” [14.4] below.

14.1 Defaults

Actually, two different default OutStream types are available:

• Print, module that lets the user dump the data contained in the internal objects;

• Plot, module, based on MatPlotLib [3], aimed to provide advanced plotting capabilities.

Both the types listed above accept as “input” a DataObjects object type. This choice is due to the
“DataObjects” system (see section 12) having the main advantage of ensuring a standardized ap-
proach for exchanging the data/meta-data among the different framework entities. Every module
can project its outcomes into a DataObjects object. This provides the user with the capability to
visualize/dump all the modules’ results. Additionally, the Print system can accept a ROM and
inquire some of its specialized methods. As already mentioned, the RAVEN framework input is
based on the eXtensible Markup Language (XML) format. Thus, in order to activate the “Out-
Stream” system, the input needs to contain a block identified by the <OutStreams> tag (as
shown below).

<OutStreams>
<!-- "OutStream" objects that need to be created-->

</OutStreams>

In the “OutStreams” block an unlimited number of “Plot” and “Print” sub-blocks can be speci-
fied. The input specifications and the main capabilities for both types are reported in the following
sections.

14.2 Default Printing system

The Printing system has been created in order to let the user dump the data, contained in the
internal data objects (see Section 12), out at anytime during the calculation. Additionally, the user
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can inquire special methods of a ROM after training it, through a printing step. Currently, the
only available output is a Comma Separated Value (CSV) file for DataObjects, and XML for
ROM objects. This will facilitate the exchanging of results and provide the possibility to dump the
solution of an analysis and “restart” another one constructing a data object from scratch, as well as
access advanced features of particular reduced order models.

14.2.1 DataObjects Printing

The XML code, that is reported below, shows different ways to request a Print OutStream for
DataObjects. The user needs to provide a name for each sub-block (XML attribute). These names
are then used in the Step blocks to activate the Printing keywords at any time. The XML node has
the following available attributes:

• name, required string attribute, is a user-defined identifier for this data object. Note: As
with other objects, this name can be used to refer to this specific entity from other input
blocks in the XML.

• dir, optional string attribute, is a user-defined directory in which the data are going to be
streamed (i.e. printed). The directory can be either inputted with an relative (with respect
the <workingDir> specified in the <RunInfo> XML node) or absolute path
Default: <workingDir>

As shown in the examples below, every <Print> block must contain, at least, the two required
tags:

• <type>, the output file type (csv or xml). Note: Only csv is currently available for
<DataObjects>

• <source>, the Data name (one of the Data items defined in the <DataObjects> block.

An optional tag <filename> can be used to specify the filename for the output. If this is not
defined, then the default name will be the name identifier of the tag.

If only these two tags are provided (as in the “first-example” below), the output file will be
filled with the whole content of the “d-name” Data object.

<OutStreams>
<Print name='first-example'>

<type>csv</type>
<source>d-name</source>

</Print>
<Print name='second-example'>

<type>csv</type>
<source>d-name</source>
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<what>Output</what>
</Print>
<Print name='third-example'>

<type>csv</type>
<source>d-name</source>
<what>Input</what>

</Print>
<Print name='fourth-example'>

<type>csv</type>
<source>d-name</source>
<what>Input|var-name-in,Output|var-name-out</what>

</Print>
<Print name='fifth-example'>

<type>csv</type>
<source>d-name</source>
<filename>example5</filename>

</Print>
</OutStreams>

If just part of the <source> is important for a particular analysis, the additional XML tag
<what> can be provided. In this block, the variables that need to be dumped must be specified, in
comma separated format. The available options, for the <what> sub-block, are listed below:

• Output, the output space will be dumped out (see “second-example”)

• Input, the input space will be dumped out (see “third-example”)

• Input—var-name-in/Output—var-name-out, only the particular variables “var-name-in”
and “var-name-out” will be reported in the output file (see “fourth-example”)

Note all of the XML tags are case-sensitive but not their content.

14.2.2 ROM Printing

While all ROMs in RAVEN are designed to be used as surrogate models, some ROMs addition-
ally offer information about the original model that isn’t accessible through another means. For
instance, HDMRRom objects can calculate sensitivity coefficients for subsets of the input domain.
The XML code shown below demonstrates the methods to request these features from a ROM. The
user needs to provide a <name> for each sub-block (XML attribute). These names are then used
in the Step blocks to activate the Printing keywords at any time. As shown in the examples below,
every <Print> block for ROMs must contain, at least, the three required tags

• <type>, the output file type (csv or xml). Note: Only xml is currently available for ROMs

• <source>, the ROM name (one of the <ROM> items defined in the <Models> block.
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• <what>, the comma-separated list of desired metrics. The list of metrics available in each
ROM is listed under that ROM type in Section 15.3. Alternatively, the keyword ’all’ can
be provided to request all available metrics, if any.

Addtionally, when printing ROMs one optional node is available,

• <target>, the ROM target for which to inquire data

If the ROM is time-dependent, the printed properties will be collected by time step. ROM printing
uses the same naming conventions as DataObjects printing. Examples:

<OutStreams>
<Print name='first-ROM-example'>

<type>xml</type>
<source>mySobolRom</source>
<what>all</what>

</Print>
<Print name='second-ROM-example'>

<type>xml</type>
<source>myGaussPolyRom</source>
<what>mean,variance</what>

</Print>
</OutStreams>

14.3 Default Plotting system

The Plotting system provides all the capabilities to visualize the analysis outcomes, in real-time or
as a post-processing stage. The system is based on the Python library MatPlotLib [3]. MatPlotLib
is a 2D/3D plotting library which produces publication quality figures in a variety of hardcopy
formats and interactive environments across platforms. This external tool has been wrapped in
the RAVEN framework, and is available to the user. Since it was unfeasible to support, in the
source code, all the interfaces for all the available plot types, the RAVEN Plotting system directly
provide a formatted input structure for 11 different plot types (2D/3D). The user may request a
plot not present among the supported ones, since the RAVEN Plotting system has the capability to
construct on the fly the interface for a Plot, based on XML instructions.

14.3.1 Plot input structure

In order to create a plot, the user needs to add, within the <OutStreams> block, a <Plot>
sub-block. Similar to the <Print> OutStream, the user needs to specify a name as an attribute
of the plot. This name will then be used to request the plot in the <Steps> block. In addition, the
Plot block accepts the following attributes:
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• interactive, optional bool attribute, specifies if the Plot needs to be interactively cre-
ated (real-time screen visualization).
Default: False

• overwrite, optional bool attribute, used when the plot needs to be dumped into picture
file/s. This attribute determines whether the code needs to overwrite the image files every
time a new plot (with the same name) is requested.
Default: False

• dir, optional string attribute, is a user-defined directory in which the data are going to be
streamed (i.e. printed). The directory can be either inputted with an relative (with respect
the <workingDir> specified in the <RunInfo> XML node) or absolute path
Default: <workingDir>

An optional tag <filename> can be used to specify the filename for the output. If this is not
defined, then the default base name will be the name identifier of the tag prepended and appended
with extra information that identifies the plot further.

As shown, in the XML input example below, the body of the Plot XML input contains two
main sub-nodes:

• <actions>, where general control options for the figure layout are defined (see Sec-
tion 14.3.1.1).

• <plotSettings>, where the actual plot options are provided.

These two main sub-block are discussed in the following paragraphs.

14.3.1.1 “Actions” input block

The input in the <actions> sub-node is common to all the Plot types, since, in it, the user
specifies all the controls that need to be applied to the figure style. This block must be unique in
the definition of the <Plot> main block. In the following list, all the predefined “actions” are
reported:

• <how>, comma separated list of output types:

– screen, show the figure on the screen in interactive mode

– pdf, save the figure as a Portable Document Format file (PDF). Note: The pdf format
does not support multiple layers that lay on the same pixel. If the user gets an error
about this, he/she should move to another format.

– png, save the figure as a Portable Network Graphics file (PNG)

– eps, save the figure as an Encapsulated Postscript file (EPS)

– pgf, save the figure as a LaTeX PGF Figure file (PGF)

– ps, save the figure as a Postscript file (PS)
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– gif, save the figure as a Graphics Interchange Format (GIF)

– svg, save the figure as a Scalable Vector Graphics file (SVG)

– jpeg, save the figure as a jpeg file (JPEG)

– raw, save the figure as a Raw RGBA bitmap file (RAW)

– bmp, save the figure as a Windows bitmap file (BMP)

– tiff, save the figure as a Tagged Image Format file (TIFF)

– svgz, save the figure as a Scalable Vector Graphics file (SVGZ)

• <title>, as the name suggests, within this block the user can specify the title of the figure.
In the body of this node, a few other tags are available:

– <text>, string type, title of the figure

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.title” method in [3].

• <labelFormat>, within this block the default scale formatting can be modified. In the
body, a few other tags are available:

– <axis>, string, the axis where to apply the defined format, ‘x,’ ‘y,’ or ‘both’.
Default: ‘both’ Note: If this action will be used in a 3-D plot, the user can input ‘z’ as
well and ‘both’ will apply this format to all three axis.

– <style>, string, the style of the number notation, ‘sci’ or ‘scientific’ for scientific,
‘plain’ for plain notation.
Default: scientific

– <scilimits>, tuple, (m, n), pair of integers, if style is ‘sci’, scientific notation will
be used for numbers outside the range 10m to 10n. Use (0,0) to include all numbers.
Note: The value for this keyword, needs to be specified between brackets [for example,
(5,6)].
Default: (0,0)

– <useOffset>, bool or double, if True, the offset will be calculated as needed; if
False, no offset will be used; if a numeric offset is specified, it will be used.
Default: False

217



• <figureProperties>, within this block the user specifies how to customize the figure
style/quality. Thus, through this “action” the user has got full control on the quality of the
figure, its dimensions, etc. This control is performed by the following keywords:

– <figsize>, tuple (optional), (width, hight), in inches.

– <dpi>, integer, dots per inch.

– <facecolor>, string, set the figure background color (please refer to “matplotlib.figure.Figure”
in [3] for a list of all the colors available).

– <edgecolor>, string, the figure edge background color (please refer to “matplotlib.figure.Figure”
in [3] for a list of all the colors available).

– <linewidth>, float, the width of lines drawn on the plot.

– <frameon>, bool, if False, suppress drawing the figure frame.

• <range>, the range “action” specifies the ranges of all the axis. All the keywords in the
body of this block are optional:

– <ymin>, double (optional), lower boundary for the y axis.

– <ymax>, double (optional), upper boundary for the y axis.

– <xmin>, double (optional), lower boundary for the x axis.

– <xmax>, double (optional), upper boundary for the x axis.

– <zmin>, double (optional), lower boundary for the z axis. Note: This keyword is
effective in 3-D plots only.

– <zmax>, double (optional), upper boundary for the z axis. Note: This keyword is
effective in 3-D plots only.

• <camera>, the camera item is available in 3-D plots only. Through this “action,” it is
possible to orientate the plot as one wishes. The controls are:

– <elevation>, double (optional), stores the elevation angle in the z plane.

– <azimuth>, double (optional), stores the azimuth angle in the x,y plane.

• <scale>, the scale block allows the specification of the axis scales:

– <xscale>, string (optional), scale of the x axis. Three options are available: “lin-
ear,”“log,” or “symlog.”
Default: linear

– <yscale>, string (optional), scale of the y axis. Three options are available: “linear,”
“log,” or “symlog.”
Default: linear

– <zscale>, string (optional), scale of the z axis. Three options are available: “linear,”
“log,” or “symlog.”
Default: linear Note: This keyword is effective in 3-D plots only.
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• <addText>, same as title.

• <autoscale>, is a convenience method for simple axis view autoscaling. It turns au-
toscaling on or off, and then, if autoscaling for either axis is on, it performs the autoscaling
on the specified axis or axes. The following sub-nodes may be specified:

– <enable>, bool (optional), True turns autoscaling on, False turns it off. None leaves
the autoscaling state unchanged.
Default: True

– <axis>, string (optional), determines which axis to apply the defined format, ‘x,’ ‘y,’
or ‘both.’
Default: ‘both’ Note: If this action is used in a 3-D plot, the user can input ‘z’ as well
and ‘both’ will apply this format to all three axis.

– <tight>, bool (optional), if True, sets the view limits to the data limits; if False, let
the locator and margins expand the view limits; if None, use tight scaling if the only
output is an image file, otherwise treat tight as False.

• <horizontalLine>, this “action” provides the ability to draw a horizontal line in the
current figure. This capability might be useful, for example, if the user wants to highlight a
trigger function of a variable. The following sub-nodes may be specified:

– <y>, double (optional), sets the y-value for the line.
Default: 0

– <xmin>, double (optional), is the starting coordinate on the x axis.
Default: 0

– <xmax>, double (optional), is the ending coordinate on the x axis.
Default: 1

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.axhline” method in [3].

Note: This capability is not available for 3-D plots.

• <verticalLine>, similar to the “horizontalLine” action, this block provides the ability
to draw a vertical line in the current figure. This capability might be useful, for example, if
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the user wants to highlight a trigger function of a variable. The following sub-nodes may be
specified:

– <x>, double (optional), sets the x coordinate of the line.
Default: 0

– <ymin>, double (optional), starting coordinate on the y axis.
Default: 0

– <ymax>, double (optional), ending coordinate on the y axis.
Default: 1

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.axvline” method in [3].

Note: This capability is not available for 3-D plots.

• <horizontalRectangle>, this “action” provides the ability to draw, in the current fig-
ure, a horizontally orientated rectangle. This capability might be useful, for example, if the
user wants to highlight a zone in the plot. The following sub-nodes may be specified:

– <ymin>, double (required), starting coordinate on the y axis.

– <ymax>, double (required), ending coordinate on the y axis.

– <xmin>, double (optional), starting coordinate on the x axis.
Default: 0

– <xmax>, double (optional), ending coordinate on the x axis. Default = 1

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.axhspan” method in [3].
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Note: This capability is not available for 3D plots.

• <verticalRectangle>, this “action” provides the possibility to draw, in the current
figure, a vertically orientated rectangle. This capability might be useful, for example, if the
user wants to highlight a zone in the plot. The following sub-nodes may be specified:

– <xmin>, double (required), starting coordinate on the x axis.

– <xmax>, double (required), ending coordinate on the x axis.

– <ymin>, double (optional), starting coordinate on the y axis.
Default: 0

– <ymax>, double (optional), ending coordinate on the y axis.
Default: 1

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.). For reference regarding the avail-
able kwargs, see “matplotlib.pyplot.axvspan” method in [3].

Note: This capability is not available for 3D plots.

• <axesBox>, this keyword controls the axes’ box. Its value can be ‘on’ or ‘off’.

• <axisProperties>, this block is used to set axis properties. There are no fixed key-
words. If only a single property needs to be set, it can be specified as the body of this block,
otherwise a dictionary-like string needs to be provided. For reference regarding the available
keys, refer to “matplotlib.pyplot.axis” method in [3].

• <grid>, this block is used to define a grid that needs to be added in the plot. The following
keywords can be inputted:

– <b>, boolean (required), toggles the grid lines on or off.

– <which>, double (required), ending coordinate on the x axis.

– <axis>, double (optional), starting coordinate on the y axis.
Default: 0

– <kwargs>, within this block the user can specify optional parameters with the fol-
lowing format:
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<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for exam-
ple <param1>{‘1stKey’:45}</param1> will be converted into a dictionary,
<param2>[56,67]</param2> into a list, etc.).

14.3.1.2 “plotSettings” input block

The sub-block identified by the keyword <plotSettings> is used to define the plot character-
istics. Within this sub-section at least a <plot> block must be present. the <plot> sub-section
may not be unique within the <plotSettings> definition; the number of <plot> sub-blocks
is equal to the number of plots that need to be placed in the same figure.

If sub-plots are to be defined then <gridSpace> needs to be present. <gridSpace> spec-
ifies the geometry of the grid that a subplot will be placed. The number of rows and number of
columns of the grid need to be set.

For example, in the following XML cut, a “line” and a “scatter” type are combined in the same
figure.

<OutStreams>
<Plot name='example2PlotsCombined'>

<actions>
<!-- Actions -->

</actions>
<plotSettings>

<gridSpace>2 2</gridSpace>
<plot>
<type>line</type>
<x>d-type|Output|x1</x>
<y>d-type|Output|y1</y>
<xlabel>label X</xlabel>
<ylabel>label Y</ylabel>
<gridLocation>

<x>0 2</x>
<y>0</y>

</gridLocation>
</plot>
<plot>
<type>scatter</type>
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<x>d-type|Output|x2</x>
<y>d-type|Output|y2</y>
<xlabel>label X</xlabel>
<ylabel>label Y</ylabel>
<gridLocation>

<x>0 2</x>
<y>1</y>

</gridLocation>
</plot>

</plotSettings>
</Plot>

</OutStreams>

The axis labels are conditionally optional nodes that can be defined under the <plotSetting>.
If the plot does not contain any sub-plots, i.e. <gridSpace> is not defined then the axis labels
are global parameters for the figure which are defined under <plotSettings>, otherwise the
axis labels can be defined under <plot> for each sub-plot seperately.

• <xlabel>, string, optional parameter, the x axis label.

• <ylabel>, string, optional parameter, the y axis label.

• <zlabel>, string, optional parameter (3D plots only), the z axis label.

One may also specify a <legend> tag that will place a legend on the plot. The legend accepts
the following sub-nodes:

• <loc>, string, optional parameter, the location where the legend will be placed on the plot.
Valid values are:

– ’best’

– ’upper right’

– ’upper left’

– ’lower left’

– ’lower right’

– ’right’

– ’center left’

– ’center right’

– ’lower center’
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– ’upper center’

– ’center’

Default: ’best’

• <ncol>, integer, optional parameter, the number of columsn to include in the legend.
Default: 1

• <fontsize>, string, optional parameter, the font size of the legend. Valid values are:

– ’xx-small’

– x-small

– ’small’

– ’medium’

– ’large’

– ’x-large’

– ’xx-large’

• <title>, string, optional parameter, the title of the legend.

Note: The text associated to each <plot> tag in the legend is defined in the <kwargs> of
that plot by specifying a <label> within the kwargs. An example usage is given below:

<Plot ...>
...
<plotSettings>

<plot>
<type>scatter</type>
<x>...</x>
<y>...</y>
<kwargs>

<label>dots</label>
</kwargs>

</plot>
<plot>

<type>line</type>
<x>...</x>
<y>...</y>
<kwargs>

<label>line</label>
</kwargs>
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</plot>
<legend>

<loc>best</loc>
<ncol>2</ncol>

</legend>
</plotSettings>

</Plot>

This will create a plot with both scattered points and a line. The plot will also have a legend
specifying the labels “dots” and “line” in two columns with the best location selected by matplotlib.

As already mentioned, within the <plotSettings> block, at least a <plot> sub-block
needs to be specified. Independent of the plot type, some keywords are mandatory:

• <type>, string, required parameter, the plot type (for example, line, scatter, wireframe,
etc.).

• <x>, string, required parameter, specifies the DataObject parameter to be plotted as the x
coordinate. This parameter must be described in a specific manner, see Section 14.3.1.2.1
below for details.

• <y>, string, required parameter, specifies the DataObject parameter to be plotted as the y
coordinate. This parameter must be described in a specific manner, see Section 14.3.1.2.1
below for details.

• <z>, string, required parameter for plots with three dimensions, specifies the DataObject
parameter to be plotted as the z coordinate. This parameter must be described in a specific
manner, see Section 14.3.1.2.1 below for details.

In addition, other plot-dependent keywords, reported in Section 14.3.1.3, can be provided.

Under the <plot> sub-block other optional keywords can be specified, such as:

• <xlabel>, string, optional parameter, the x axis label.

• <ylabel>, string, optional parameter, the y axis label.

• <zlabel>, string, optional parameter (3D plots only), the z axis label.

• <gridLocation>, xmlNode, optional xmlNode (depending on the grid geometry)

– <x>, integer, required parameter, the position of the subPlot in the grid Space. if this
node has a single value then the subplot occupies a single node at the specified location,
otherwise the second integer represents the number of nodes that this subplot occupies,
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i.e. in the example above the first subplot occupies 2 nodes starting from the zero node
in x direction.

– <y>, integer, required parameter, the position of the subPlot in the grid Space. if this
node has a single value then the subplot occupies a single node at the specified location,
otherwise the second integer represents the number of nodes that this subplot occupies,
i.e. in the example above the first subplot occupies a single node at the zero node in y
direction.

• <colorMap>, string, optional parameter, specifies a DataObject parameter whose value
will be used to vary the color of plotted points. This parameter must be described in a specific
manner, see Section 14.3.1.2.1 below for details.

14.3.1.2.1 Specifying What Values to Plot As already mentioned, the Plot system accepts
as input for the visual parameters (i.e., x, y, z, colorMap), data only from a DataObjects object.
Considering the structure of ”DataObjects”, the parameters are specified as three values separated
by the vertical bar character (’|’) as follows:

DataObject Name|Parameter Type|Parameter Name

Where:

Value Description
DataObject Name Name of the DataObject that contains the parameter

Parameter Type
Either Input or Output depending on whether the parameter
is defined in the <Input> or <Output> part of the DataObject

Parameter Name The name of the parameter in the DataObject to plot

Note: If the Parameter Name part of the variable specification itself contains the vertical bar
character (‘|‘) used to separate the three values, it must be enclosed in parenthesis to be interpreted
properly. For example:

DataObject Name|Parameter Type|(parameter|name)

14.3.1.3 Predefined Plotting System: 2D/3D

As already mentioned above, the Plotting system provides a specialized input structure for several
different kind of plots specified in the <type> node:

• 2 Dimensional plots:
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– scatter creates a scatter plot of x vs y, where x and y are sequences of numbers of
the same length.

– line creates a line plot of x vs y, where x and y are sequences of numbers of the same
length.

– histogram computes and draws the histogram of x. Note: This plot accepts only
the XML node <x> even if it is considered as a 2D plot type.

– stem plots vertical lines at each x location from the baseline to y, and places a marker
there.

– step creates a 2 dimensional step plot.

– pseudocolor creates a pseudocolor plot of a two dimensional array. The two di-
mensional array is built creating a mesh from <x> and <y> data, in conjunction with
the data specified in the <colorMap> node.

– contour builds a contour plot creating a plot from <x> and <y> data, in conjunction
with the data specified in the <colorMap> node.

– filledContour creates a filled contour plot from <x> and <y> data, in conjunction
with the data specified in the <colorMap> node.

• 3 Dimensional plots:

– scatter creates a scatter plot of (x,y) vs z, where x, y, z are sequences of numbers
of the same length.

– line creates a line plot of (x,y) vs z, where x, y, z are sequences of numbers of the
same length.

– stem creates a 3 Dimensional stem plot of (x,y) vs z.

– surface creates a surface plot of (x,y) vs z. By default it will be colored in shades of
a solid color, but it also supports color mapping.

– wireframe creates a 3D wire-frame plot. No color mapping is supported.

– tri-surface creates a 3D tri-surface plot. It is a surface plot with automatic trian-
gulation.

– contour3D builds a 3D contour plot creating the plot from <x>, <y> and <z> data,
in conjunction with the data specified in <colorMap>.

– filledContour3D builds a filled 3D contour plot creating the plot from <x>, <y>
and <z> data, in conjunction with the data specified in <colorMap>.

– histogram computes and draws the histogram of x and y. Note: This plot accepts
only the XML nodes <x> and <y> even if it is considered as 3D plot type since the
frequency is mapped to the third dimension.
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As already mentioned, the settings for each plot type are specified within the XML block called
<plot>. The sub-nodes that are available depends on the plot type as each plot type has its own
set of parameters that can be specified.

In the following sub-sections all the options for the plot types listed above are reported.

14.3.2 2D & 3D Scatter plot

In order to create a “scatter” plot, either 2D or 3D, the user needs to write in the <type> body
the keyword “scatter.” In order to customize the plot, the user can define the following XML sub
nodes:

• <s>, integer, optional field, represents the size in points2̂. The “points” have the same
meaning of the font size (e.g. Times New Roman, pts 10). In here the user specifies the area
of the marker size.
Default: 20

• <c>, string, optional field, specifies the color or sequence of color to use. <c> can be
a single color format string, a sequence of color specifications of length N, or a sequence
of N numbers to be mapped to colors using the cmap and norm specified via <kwargs>.
Note: <c> should not be a single numeric RGB or RGBA sequence because that is indis-

tinguishable from an array of values to be colormapped. <c> can be a 2D array in which
the rows are RGB or RGBA. Note: <colorMap> will overwrite <c>. If <colorMap> is
defined then the color set used can be defined by <cmap>. If no <cmap> is given then the
default color set of “matplotlib.pyplot.scatter” method in [3] is used. If <colorMap> is not
defined then the plot is in solid color (default blue) as defined with <color> in <kwargs>.

• <marker>, string, optional field, specifies the type of marker to use.
Default: o

• <alpha>, string, optional field, sets the alpha blending value, between 0 (transparent) and
1 (opaque).
Default: None

• <linewidths>, string, optional field, widths of lines used in the plot. Note that this is a
tuple, and if you set the linewidths argument you must set it as a sequence of floats.
Default: None;

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
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</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2>[56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.scatter” method in [3].

14.3.3 2D & 3D Line plot

In order to create a “line” plot, either 2D or 3D, the user needs to write in the <type> body the
keyword “line.” In order to customize the plot, the user can define the following XML sub nodes:

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <interpPointsY>, integer, optional field, sets the number of points need to be used for
interpolation of the y axis. (only 3D line plot). Note: If <colorMap> is used then a
scatter plot will be plotted.

14.3.4 2D & 3D Histogram plot

In order to create a “histogram” plot, either 2D or 3D, the user needs to write in the <type> body
the keyword “histogram.” In order to customize the plot, the user can define the following XML
sub nodes:

• <bins>, integer or array like, optional field, sets the number of bins if an integer is used
or a sequence of edges if a python list is used.
Default: 10

• <normed>, boolean, optional field, if True then the the histogram will be normalized to 1.
Default: False

• <weights>, sequence, optional field, represents an array of weights, of the same shape as
x. Each value in x only contributes its associated weight towards the bin count (instead of
1). If normed is True, the weights are normalized, so that the integral of the density over the
range remains 1.
Default: None
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• <cumulative>, boolean, optional field, if True, then a histogram is computed where
each bin gives the counts in that bin plus all bins for smaller values. The last bin gives
the total number of data points. If normed is also True then the histogram is normalized
such that the last bin equals 1. If cumulative evaluates to less than 0 (e.g., -1), the direction
of accumulation is reversed. In this case, if normed is also True, then the histogram is
normalized such that the first bin equals 1.
Default: False

• <histtype>, string, optional field, The type of histogram to draw:

– bar is a traditional bar-type histogram. If multiple data sets are given the bars are
arranged side by side.

– barstacked is a bar-type histogram where multiple data sets are stacked on top of each
other.

– step generates a line plot that is by default unfilled.

– stepfilled generates a line plot that is by default filled.

Default: bar

• <align>, string, optional field, controls how the histogram is plotted.

– left bars are centered on the left bin edge.

– mid bars are centered between the bin edges.

– right bars are centered on the right bin edges.

Default: mid

• <orientation>, string, optional field, specifies the orientation of the histogram:

– horizontal
– vertical

Default: vertical

• <rwidth>, float, optional field, sets the relative width of the bars as a fraction of the bin
width.
Default: None

• <log>, boolean, optional field, sets a log scale.
Default: False
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• <color>, string, optional field, specifies the color of the histogram.
Default: blue;

• <stacked>, boolean, optional field, if True, multiple data elements are stacked on top of
each other. If False, multiple data sets are aranged side by side if histtype is ‘bar’ or on top
of each other if histtype is ‘step.’
Default: False

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2>[56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.hist” method in [3].

14.3.5 2D & 3D Stem plot

In order to create a “stem” plot, either 2D or 3D, the user needs to write in the <type> body the
keyword “stem.” In order to customize the plot, the user can define the following XML sub nodes:

• <linefmt>, string, optional field, sets the line style used in the plot.
Default: b-

• <markerfmt>, string, optional field, sets the type of marker format to use in the plot.
Default: bo

• <basefmt>, string, optional field, sets the base format.
Default: r-

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>
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The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.).

For reference regarding the available kwargs, see “matplotlib.pyplot.stem” method in [3].

14.3.6 2D Step plot

In order to create a 2D “step” plot, the user needs to write in the <type> body the keyword “step.”
In order to customize the plot, the user can define the following XML sub nodes:

• <where>, string, optional field, specifies the positioning:

– pre, the interval from x[i] to x[i+1] has level y[i+1]

– post, that interval has level y[i]

– mid, the jumps in y occur half-way between the x-values

Default: mid

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.step” method in [3].

14.3.7 2D Pseudocolor plot

In order to create a 2D “pseudocolor” plot, the user needs to write in the <type> body the keyword
“pseudocolor.” In order to customize the plot, the user can define the following XML sub nodes:

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: [ linear]
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• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.pcolor” method in [3].

14.3.8 2D Contour or filledContour plots

In order to create a 2D “contour” or “filledContour” plot, the user needs to write in the <type>
body the keyword “contour” or “filledContour,” respectively. In order to customize the plot, the
user can define the following XML sub-nodes:

• <numberBins>, integer, optional field, sets the number of bins.
Default: 5

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <colorMap> vector is the array to visualize. If <colorMap> is defined then the color
set used can be defined by <cmap>. If no <cmap> is given then the plot is in solid color
(default blue) as defined with <color> in <kwargs>.

• <cmap>, string, optional field, defines the color map to use for this plot.
Default: None

• <kwargs>, within this block the user can specify optional parameters with the following
format:
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<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.contour” method in [3].

14.3.9 3D Surface Plot

In order to create a 3D “surface” plot, the user needs to write in the <type> body the keyword
“surface.” In order to customize the plot, the user can define the following XML sub nodes:

• <rstride>, integer, optional field, specifies the array row stride (step size).
Default: 1

• <cstride>, integer, optional field, specifies the array column stride (step size).
Default: 1

• <cmap>, string, optional field, defines the color map to use for this plot.
Default: None Note: If <colorMap> is defined then the plot will always use a color set
even if no <cmap> is given. In such a case, if no <cmap> is given, then the default color
set of “matplotlib.pyplot.surface” method in [3] is used. If <colorMap> and <cmap> are
both not defined then the plot is in solid color (default blue) as defined with <color> in
<kwargs>.

• <antialiased>, boolean, optional field, determines whether or not the rendering should
be antialiased.
Default: False

• <linewidth>, integer, optional field, defines the widths of lines rendered on the plot.
Default: 0

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.
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• <interpPointsY>, integer, optional field, sets the number of points need to be used for
interpolation of the y axis.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.surface” method in [3].

14.3.10 3D Wireframe Plot

In order to create a 3D “wireframe” plot, the user needs to write in the <type> body the keyword
“wireframe.” In order to customize the plot, the user can define the following XML sub nodes:

• <rstride>, integer, optional field, sets the array row stride (step size).
Default: 1

• <cstride>, integer, optional field, sets the array column stride (step size).
Default: 1

• <cmap>, string, optional field, defines the color map to use for this plot.
Default: None Note: <cmap> is not applicable in the current version of MatPlotLib for
wireframe plots. However, if the colorMap option is set then a surface plot is plotted with a
transparency of 0.4 on top of wireframe to give a visual colormap. Note: If <colorMap>
is defined then the plot will always use a color set even if no <cmap> is given. In such a
case, if no <cmap> is given, then the default color set of “matplotlib.pyplot.surface” method
in [3] is used. If <colorMap> and <cmap> are both not defined then the plot is in solid
color (default blue) as defined with <color> in <kwargs>.

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.
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• <interpPointsY>, integer, optional field, sets the number of points need to be used for
interpolation of the y axis.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.wireframe” method in [3].

14.3.11 3D Tri-surface Plot

In order to create a 3D “tri-surface” plot, the user needs to write in the <type> body the keyword
“tri-surface.” In order to customize the plot, the user can define the following XML sub nodes:

• <color>, string, optional field, sets the color of the surface patches.
Default: b

• <shade>, boolean, optional field, determines whether to apply shading or not.
Default: False

• <cmap>, string, optional field, defines the color map to use for this plot.
Default: None Note: If <colorMap> is defined then the plot will always use a color set
even if no <cmap> is given. In such a case, if no <cmap> is given, then the default color
set of “matplotlib.pyplot.trisurface” method in [3] is used. If <colorMap> and <cmap>
are both not defined then the plot is in solid color (default blue) as defined with <color>
in <kwargs>.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
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</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.trisurface” method in [3].

14.3.12 3D Contour or filledContour plots

In order to create a 3D “Contour” or “filledContour” plot, the user needs to write in the <type>
body the keyword “contour3D” or “filledContour3D,” respectively. In order to customize these
plots, the user can define the following XML sub nodes:

• <numberBins>, integer, optional field, sets the number of bins to use.
Default: 5

• <interpolationType>, string, optional field, is the type of interpolation algorithm to
use for the data. Available options are “nearest,” “linear,” “cubic,” “multiquadric,” “inverse,”
“gaussian,” “Rbflinear,” “Rbfcubic,” “quintic,” and “thin plate.”
Default: linear

• <interpPointsX>, integer, optional field, sets the number of points need to be used for
interpolation of the x axis.

• <interpPointsY>, integer, optional field, sets the number of points need to be used for
interpolation of the y axis.

• <colorMap> vector is the array to visualize. If <colorMap> is defined then the color
set used can be defined by <cmap>. If no <cmap> is given then the plot is in solid color
(default blue) as defined with <color> in <kwargs>.

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.). For reference regarding the available kwargs, see “mat-
plotlib.pyplot.contour3d” method in [3].
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14.3.13 DataMining plots

In order to create a “DataMining” plot, the user needs to write in the <type> body the keyword
“dataMining”. “DataMining” plots are based on 2D or 3D Scattering plots, depending on the
method/algorithm used in the “DataMining” postprocessor [see 15.5.9]. These plots are created to
ease the color labeling the clusters, etc parameters in the data. The following are the optional or
required input parameters that can be used in these plots additional to the coordinate inputs <x>,
<y>, or <z> depending on the dimension:

• <type>, string, required field, this block should read “dataMining” in order to create a
data mining plot.

• <SKLtype>, string, required field, name of the algorithm used in the “dataMining” post-
processor. It is one of:

– cluster: for clustering algorithms, such as KMeans clustering.

– bicluster ( Note: not implemented yet!)

– mixture: for Gaussian mixture algorithms, such as GMM classifier

– manifold: for Manifold Learning algorithms, such as Spectral Embedding

– decomposition: for decomposing signals in components algorithms, such as Principal
Component Analysis (PCA)

• <clusterLabels>, string, optional field, defines the place where the labels of the clus-
ters are located. As in the visual parameters (i.e., x,y,z and colorMap) this is also from a
DataObjects object. Considering the structure of “DataObjects”, the labels inputted as fol-
lows: DataObjectName|Output|DataMiningPPNameLabels.
Default: None

• <noClusters>, integer, optional field, defines the number of clusters used in the “dataMin-
ing” postprocessor
Default: 1

• <kwargs>, within this block the user can specify optional parameters with the following
format:

<kwargs>
<param1>value1</param1>
<param2>value2</param2>
</kwargs>

The kwargs block is able to convert whatever string into a python type (for example <param1>
{‘1stKey’:45}</param1> will be converted into a dictionary, <param2> [56,67]
</param2> into a list, etc.).
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For reference regarding the other available kwargs, see “matplotlib.pyplot.scatter” method
in [3].

14.3.14 Example XML input

<OutStreams>
<Plot name='2DHistoryPlot' interactive='False'

overwrite='False'>
<actions>

<how>pdf,png,eps</how>
<title>
<text>***</text>

</title>
</actions>
<plotSettings>

<plot>
<type>line</type>
<x>stories|Output|time</x>
<y>stories|Output|pipe1_Hw</y>
<kwargs>
<color>green</color>
<label>pipe1-Hw</label>

</kwargs>
</plot>
<plot>
<type>line</type>
<x>stories|Output|time</x>
<y>stories|Output|pipe1_aw</y>
<kwargs>
<color>blue</color>
<label>pipe1-aw</label>

</kwargs>
</plot>
<xlabel>time [s]</xlabel>
<ylabel>evolution</ylabel>

</plotSettings>
</Plot>

</OutStreams>

239



14.4 Specific Plots

For convenience, RAVEN offers tailored plotting strategies that apply in specific circumstances.
They are not as flexible as the default plotting system, but may offer a quick method to view data
with minimal input required. These are described in the following subsection.

Specific plotting strategies are requested using the <Plot> node attribute subType. For
example,

<Simulation>
...
<OutStreams>

<Plot name="mySamples" subType="PlottingStrategyName">
...

</Plot>
</OutStreams>

</Simulations>

14.4.1 SamplePlot

The ’SamplePlot’ subType is a very simple plotting tool meant for quickly viewing the
results of sampling, or as a basis for adding new plotting strategies. This plotter constructs a series
of verticle plots whose x-axis is the sample ID and y-axis is a particular variables’ values.

The ’SamplePlot’ subType requires the following nodes:

• <source>, required, string, selects which DataObject should be used to take data for
plotting. This DataObject must be listed in the Step in which this OutStream is used, and is
usually the result of as <MultiRun> step.

• <vars>, required, comma-separated strings, identifies which variables should be plot-
ted as a function of sample number. These variables must be included in the <source>
DataObject.

For example,

<Simulation>
...
<OutStreams>

<Plot name="mySamples" subType="SamplePlot">
<source>dataObjectFromStep</source>
<vars>a, b, x, y</vars>
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</Plot>
</OutStreams>

</Simulations>
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15 Models

In RAVEN, Models are important entities. A model is an object that employs a mathematical
representation of a phenomenon, either of a physical or other nature (e.g. statistical operators,
etc.). From a practical point of view, it can be seen, as a “black box” that, given an input, returns
an output.

RAVEN has a strict classification of the different types of models. Each “class” of models is
represented by the definition reported above, but it can be further classified based on its particular
functionalities:

• <Code> represents an external system code that employs a high fidelity physical model.

• <Dummy> acts as “transfer” tool. The only action it performs is transferring the the infor-
mation in the input space (inputs) into the output space (outputs). For example, it can be
used to check the effect of a sampling strategy, since its outputs are the sampled parameters’
values (input space) and a counter that keeps track of the number of times an evaluation has
been requested.

• <ROM>, or reduced order model, is a mathematical model trained to predict a response of
interest of a physical system. Typically, ROMs trade speed for accuracy representing a
faster, rough estimate of the underlying phenomenon. The “training” process is performed by
sampling the response of a physical model with respect to variation of its parameters subject
to probabilistic behavior. The results (outcomes of the physical model) of the sampling are
fed into the algorithm representing the ROM that tunes itself to replicate those results.

• <ExternalModel>, as its name suggests, is an entity existing outside the RAVEN frame-
work that is embedded in the RAVEN code at run time. This object allows the user to create
a Python module that will be treated as a predefined internal model object.

• <EnsembleModel> is model that is able to combine Code, ExternalModel and ROM
models. It is aimed to create a chain of Models (whose execution order is determined by the
Input/Output relationships among them). If the relationships among the models evolve in a
non-linear system, a Picard’s Iteration scheme is employed.

• <PostProcessor> is a container of all the actions that can manipulate and process a data
object in order to extract key information, such as statistical quantities, clustering, etc.

Before analyzing each model in detail, it is important to mention that each type needs to be con-
tained in the main XML node <Models>, as reported below:

Example:
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<Simulation>
...
<Models>

...
<WhatEverModel name='whatever'>

...
</WhatEverModel>
...

</Models>
...

</Simulation>

In the following sub-sections each Model type is fully analyzed and described.

15.1 Code

The Code model represents an external system software employing a high fidelity physical model.
The link between RAVEN and the driven code is performed at run-time, through coded interfaces
that are the responsible for transferring information from the code to RAVEN and vice versa. In
Section 19, all of the available interfaces are reported and, for advanced users, Section 20 explains
how to couple a new code.

The specifications of this model must be defined within a <Code> XML block. This XML
node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, specifies the code that needs to be associated to this
Model. Note: See Section 19 for a list of currently supported codes.

This model can be initialized with the following children:

• <executable> string, required field specifies the path of the executable to be used.

• <walltime> string, optional field specifies the maximum allowed run time of the code;
if the code running time is greater than the specified walltime then the code run is stopped.
The stopped run is then considered as if it crashed. Note: Both absolute and relative path
can be used. In addition, the relative path to the working directory can also be used.

• <preexec> string, optional field specifies the path of pre-executable to be used. Note: Both
absolute and relative path can be used. In addition, the relative path to the working directory
can also be used.
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• <alias> string, optional field specifies alias for any variable of interest in the input or
output space for the Code. These aliases can be used anywhere in the RAVEN input to refer
to the Code variables. In the body of this node the user specifies the name of the variable
that the model is going to use (during its execution). The actual alias, usable throughout the
RAVEN input, is instead defined in the variable attribute of this tag.
The user can specify aliases for both the input and the output space. As sanity check, RAVEN
requires an additional required attribute type. This attribute can be either “input” or “out-
put”. Note: The user can specify as many aliases as needed.
Default: None

• <clargs> string, optional field allows addition of command-line arguments to the execu-
tion command. If the code interface specified in <Code> subType does not specify how
to determine the input file(s), this node must be used to specify them. There are several types
of <clargs>, based on the type:

– type string, required field specifies the type of command-line argument to add. Op-
tions include ’input’, ’output’, ’prepend’, ’postpend’, ’text’, and
’python’.

– arg string, optional field specifies the flag to be used before the entry. For example,
arg=’-i’ would place a -i before the entry in the execution command. Required
for the ’output’ type.

– extension string, optional field specifies the type of file extension to use (for ex-
ample, -i or -o). This links the <Input> file in the <Step> to this location in the
execution command. Required for ’input’ type.

– delimiter string, optional field specifies the delimiter that is used between the arg
and the provided input file with the extension given by extension. Note: This is
currently only used to link the arg and input file. i.e. the type should be ’input’
in order to use this feature.

The execution command is combined in the order ’prepend’, <python> <executable>,
’input’, ’output’, ’text’, ’postpend’. The ’python’ is a special type that
puts the name of the python command.

• <fileargs> string, optional field like <clargs>, but allows editing of input files to
specify the output filename and/or auxiliary file names. The location in the input files to
edit using these arguments are identified in the input file using the prefix-postfix notation,
which defaults to $RAVEN-var$ for variable keyword var. The variable keyword is then
listed in the <fileargs> node in the attribute arg to couple it in Raven. If the code
interface specified in <Code> subType does not specify how to name the output file, that
must be specified either through <clargs> or <filargs>, with type ’output’. The
attributes required for <fileargs> are as follows:

– type string, required field specifies the type of entry to replace in the file. Possible
values for <fileargs> type are ’input’ and ’output’.
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– arg string, required field specifies the Raven variable with which to replace the
file of interest. This should match the entry in the template input file; that is, if
$RAVEN-auxinp$ is in the input file, the arg for the corresponding input file should
be ’auxinp’.

– extension string, optional field specifies the extension of the input file that should
replace the Raven variable in the input file. This attribute is required for the ’input’
type and ignored for the ’output’ type. Note: Currently, there can only be a
one-to-one pairing between input files and extensions; that is, multiple Raven-editable
input files cannot have the same extension.

Example:

<Simulation>
...
<Models>

...
<Code name='aUserDefinedName' subType='RAVEN_Driven_code'>

<executable>path_to_executable</executable>
<alias variable='internal_RAVEN_input_variable_name1'

type="input">
External_Code_input_Variable_Name_1

</alias>
<alias variable='internal_RAVEN_input_variable_name2'

type='input'>
External_Code_input_Variable_Name_2

</alias>
<alias variable='internal_RAVEN__output_variable_name'

type='output'>
External_Code_output_Variable_Name_2

</alias>
<clargs type='prepend' arg='python'/>
<clargs type='input' arg='-i' extension='.i'/>
<fileargs type='input' arg='aux' extension='.two'
<fileargs type='output' arg='out' />

</Code>
...

</Models>
...

</Simulation>
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15.2 Dummy

The Dummy model is an object that acts as a pass-through tool. The only action it performs is
transferring the information in the input space (inputs) to the output space (outputs). For example,
it can be used to check the effect of a particular sampling strategy, since its outputs are the sampled
parameters’ values (input space) and a counter that keeps track of the number of times an evaluation
has been requested.

The specifications of this model must be defined within a <Dummy> XML block. . This XML
node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, this attribute must be kept empty.

This model can be initialized with the following children:

• <alias> string, optional field specifies alias for any variable of interest in the input or out-
put space for the Dummy. These aliases can be used anywhere in the RAVEN input to refer
to the Dummy variables. In the body of this node the user specifies the name of the variable
that the model is going to use (during its execution). The actual alias, usable throughout the
RAVEN input, is instead defined in the variable attribute of this tag.
The user can specify aliases for both the input and the output space. As sanity check, RAVEN
requires an additional required attribute type. This attribute can be either “input” or “out-
put”. Note: The user can specify as many aliases as needed.
Default: None
Since the Dummy model represents a transfer function only, the usage of the alias is rela-
tively meaningless.

Given a particular Step using this model, if this model is linked to a Data with the role of Out-
put, it expects one of the output parameters will be identified by the keyword “OutputPlaceHolder”
(see Section 18).

Example:

<Simulation>
...
<Models>

...
<Dummy name='aUserDefinedName1' subType=''/>

<Dummy name='aUserDefinedName2' subType=''>
<alias variable="a_RAVEN_input_variable" type="input">
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another_name_for_this_variable_in_the_model
</alias>

</Dummy>
...

</Models>
...

</Simulation>

15.3 ROM

A Reduced Order Model (ROM) is a mathematical model consisting of a fast solution trained to
predict a response of interest of a physical system. The “training” process is performed by sam-
pling the response of a physical model with respect to variations of its parameters subject, for
example, to probabilistic behavior. The results (outcomes of the physical model) of the sampling
are fed into the algorithm representing the ROM that tunes itself to replicate those results. RAVEN
supports several different types of ROMs, both internally developed and imported through an ex-
ternal library called “scikit-learn” [4].

Currently in RAVEN, the ROMs are classified into several sub-types that, once chosen, provide
access to several different algorithms. These sub-types are specified in the subType attribute and
should be one of the following:

• ’GaussPolynomialRom’, for both static and time-dependent regression

• ’HDMRRom’, for both static and time-dependent regression

• ’NDinvDistWeight’, for both static and time-dependent regression

• ’NDSpline’, for both static and time-dependent regression

• ’SciKitLearn’, for both static and time-dependent regression and classification

• ’MSR’, for both static and time-dependent regression

• ’ARMA’, for time-dependent stochastic regression (time series generator)

• ’PolyExponential’, for time-dependent regression

• ’DMD’, for time-dependent regression

• ’KerasMLPClassifier’, for deep neuron network

The specifications of this model must be defined within a <ROM> XML block. This XML
node accepts the following attributes:

247



• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, defines which of the sub-types should be used, choos-
ing among the previously reported types. This choice conditions the subsequent the required
and/or optional <ROM> sub-nodes.

In the <ROM> input block, the following XML sub-nodes are required, independent of the
subType specified:

• <Features>, comma separated string, required field, specifies the names of the features
of this ROM. Note: These parameters are going to be requested for the training of this object
(see Section 18.4);

• <Target>, comma separated string, required field, contains a comma separated list of
the targets of this ROM. These parameters are the Figures of Merit (FOMs) this ROM is
supposed to predict. Note: These parameters are going to be requested for the training of
this object (see Section 18.4).

If a time-dependent ROM is requested, a HistorySet should be provided. The temporal vairable
specified in the HistorySet should be also listed as sub-nodes inside <ROM>

• <pivotParameter>, string, optional parameter, specifies the pivot variable (e.g. time,
etc) used in the input HistorySet.
Default: time

In addition, if the user wants to use the alias system, the following XML block can be inputted:

• <alias> string, optional field specifies alias for any variable of interest in the input or
output space for the ROM. These aliases can be used anywhere in the RAVEN input to refer
to the ROM variables. In the body of this node the user specifies the name of the variable
that the model is going to use (during its execution). The actual alias, usable throughout the
RAVEN input, is instead defined in the variable attribute of this tag.
The user can specify aliases for both the input and the output space. As sanity check, RAVEN
requires an additional required attribute type. This attribute can be either “input” or “out-
put”. Note: The user can specify as many aliases as needed.
Default: None

The types and meaning of the remaining sub-nodes depend on the sub-type specified in the
attribute subType.
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Note that if an HistorySet is provided in the training step then a temporal ROM is created, i.e.
a ROM that generates not a single value prediction of each element indicated in the <Target>
block but its full temporal profile.

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing most of the Reduced Order Models (e.g. most of the SciKitLearn-based ROMs):

X′ =
(X− µ)

σ
(3)

In the following sections the specifications of each ROM type are reported, highlighting when a
Z-score normalization is performed by RAVEN before constructing the ROM or when it is not
performed.

15.3.1 NDspline

The NDspline sub-type contains a single ROM type, based on an N -dimensional spline inter-
polation/extrapolation scheme. In spline interpolation, the regressor is a special type of piece-
wise polynomial called tensor spline. The interpolation error can be made small even when using
low degree polynomials for the spline. Spline interpolation avoids the problem of Runge’s phe-
nomenon, in which oscillation can occur between points when interpolating using higher degree
polynomials.

In order to use this ROM, the <ROM> attribute subType needs to be ’NDspline’ (see the
example below). No further XML sub-nodes are required. Note: This ROM type must be trained
from a regular Cartesian grid. Thus, it can only be trained from the outcomes of a grid sampling
strategy.

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the NDspline ROM:

X′ =
(X− µ)

σ
(4)

Example:

<Simulation>
...
<Models>

...
<ROM name='aUserDefinedName' subType='NDspline'>

<Features>var1,var2,var3</Features>
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<Target>result1,result2</Target>
</ROM>
...

</Models>
...

</Simulation>

15.3.2 pickledROM

It is not uncommon for a reduced-order model (ROM) to be created and trained in one RAVEN
run, then serialized to file (pickled), then loaded into another RAVEN run to be used as a model.
When this is the case, a <ROM> with subtype ’pickledROM’ is used to hold the place of the
ROM that will be loaded from file. The notation for this ROM is much less than a typical ROM; it
only requires a name and its subtype.

Note that when loading ROMs from file, RAVEN will not perform any checks on the expected
inputs or outputs of a ROM; it is expected that a user know at least the I/O of a ROM before trying
to use it as a model. However, RAVEN does require that pickled ROMs be trained before pickling
in the first place.

Initially, a pickledROM is not usable. It cannot be trained or sampled; attempting to do so will
raise an error. An <IOStep> is used to load the ROM from file, at which point the ROM will
have all the same characteristics as when it was pickled in a previous RAVEN run.

Example: For this example the ROM has already been created and trained in another RAVEN
run, then pickled to a file called rom pickle.pk. In the example, the file is identified in
<Files>, the model is defined in <Models>, and the model loaded in <Steps>.

<Simulation>
...
<Files>

<Input name="rompk" type="">rom_pickle.pk</Input>
</Files>
...
<Models>

...
<ROM name="myRom" subType="pickledROM"/>
...

</Models>
...
<Steps>

...
<IOStep name="loadROM">
<Input class="Files" type="">rompk</Input>
<Output class="Models" type="ROM">myRom</Output>

</IOStep>
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...
</Steps>
...

</Simulation>

15.3.3 GaussPolynomialRom

The GaussPolynomialRom sub-type contains a single ROM type, based on a characteristic Gaus-
sian polynomial fitting scheme: generalized polynomial chaos expansion (gPC). In gPC, sets of
polynomials orthogonal with respect to the distribution of uncertainty are used to represent the
original model. The method converges moments of the original model faster than Monte Carlo
for small-dimension uncertainty spaces (N < 15). In order to use this ROM, the <ROM> attribute
subType needs to be ’GaussPolynomialRom’ (see the example below). The GaussPolyno-
mialRom is dependent on specific sampling; thus, this ROM cannot be trained unless a SparseG-
ridCollocation or similar Sampler specifies this ROM in its input and is sampled in a MultiRun
step. In addition to the common <Target> and <Features>, this ROM requires two more
nodes and can accept multiple entries of a third optional node.

• <IndexSet>, string, required field, specifies the rules by which to construct multidimen-
sional polynomials. The options are ’TensorProduct’, ’TotalDegree’,
’HyperbolicCross’, and ’Custom’. Total degree is efficient for uncertain inputs
with a large degree of regularity, while hyperbolic cross is more efficient for low-regularity
input spaces. If ’Custom’ is chosen, the <IndexPoints> is required.

• <PolynomialOrder>, integer, required field, indicates the maximum polynomial order
in any one dimension to use in the polynomial chaos expansion. Note: If non-equal impor-
tance weights are supplied in the optional <Interpolation> node, the actual polynomial
order in dimensions with high importance might exceed this value; however, this value is still
used to limit the relative overall order.

• <SparseGrid>,string, optional field, allows specification of the multidimensional quadra-
ture construction strategy. Options are ’smolyak’ and ’tensor’. Default is ’smolyak’.

• <IndexPoints>, list of tuples, required field, used to specify the index set points in a
’Custom’ index set. The tuples are entered as comma-seprated values between parenthe-
sis, with each tuple separated by a comma. Any amount of whitespace is acceptable. For ex-
ample, <IndexPoints>(0,1),(0,2),(1,1),(4,0)</IndexPoints> Note: Us-
ing custom index sets does not guarantee accurate convergence.

• <Interpolation>, string, optional field, offers the option to specify quadrature, poly-
nomials, and importance weights for the given variable name. The ROM accepts any number
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of <Interpolation> nodes up to the dimensionality of the input space. This node ac-
cepts several attributes, all of which are optional and default to the code-defined optimal
choices based on the input dimension uncertainty distribution:

– quad, string, optional field, specifies the quadrature type to use for collocation in
this dimension. The default options depend on the uncertainty distribution of the input
dimension, as shown in Table 3. Additionally, Clenshaw Curtis quadrature can be used
for any distribution that doesn’t include an infinite bound.
Default: see Table 3. Note: For an uncertain distribution aside from the four listed
on Table 3, this ROM makes use of the uniform-like range of the distribution’s CDF
to apply quadrature that is suited uniform uncertainty (Legendre). It converges more
slowly than the four listed, but are viable choices. Choosing polynomial type Legendre
for any non-uniform distribution will enable this formulation automatically.

– poly, string,optional field, specifies the interpolating polynomial family to use for the
polynomial expansion in this dimension. The default options depend on the quadrature
type chosen, as shown in Table 3. Currently, no polynomials are available outside the
default.
Default: see Table 3.

– weight, float, optional field, delineates the importance weighting of this dimension.
A larger importance weight will result in increased resolution for this dimension at the
cost of resolution in lower-weighted dimensions. The algorithm normalizes weights at
run-time.
Default: 1.

Unc. Distribution Default Quadrature Default Polynomials
Uniform Legendre Legendre
Normal Hermite Hermite
Gamma Laguerre Laguerre

Beta Jacobi Jacobi
Other Legendre* Legendre*

Table 3: GaussPolynomialRom defaults

Note: This ROM type must be trained from a collocation quadrature set. Thus, it can only be
trained from the outcomes of a SparseGridCollocation sampler. Also, this ROM must be referenced
in the SparseGridCollocation sampler in order to accurately produce the necessary sparse grid
points to train this ROM.

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the GaussPolynomialRom ROM.

Example:
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<Simulation>
...
<Samplers>

...
<SparseGridCollocation name="mySG" parallel="0">
<variable name="x1">

<distribution>myDist1</distribution>
</variable>
<variable name="x2">

<distribution>myDist2</distribution>
</variable>
<ROM class = 'Models' type = 'ROM' >myROM</ROM>

</SparseGridCollocation>
...

</Samplers>
...
<Models>

...
<ROM name='myRom' subType='GaussPolynomialRom'>
<Target>ans</Target>
<Features>x1,x2</Features>
<IndexSet>TotalDegree</IndexSet>
<PolynomialOrder>4</PolynomialOrder>
<Interpolation quad='Legendre' poly='Legendre'

weight='1'>x1</Interpolation>
<Interpolation quad='ClenshawCurtis' poly='Jacobi'

weight='2'>x2</Interpolation>
</ROM>
...

</Models>
...

</Simulation>

When Printing this ROM via a Print OutStream (see 14.2), the available metrics are:

• ’mean’, the mean value of the ROM output within the input space it was trained,

• ’variance’, the variance of the ROM output within the input space it was trained,

• ’samples’, the number of distinct model runs required to construct the ROM,

• ’indices’, the Sobol sensitivity indices (in percent), Sobol total indices, and partial vari-
ances,

• ’polyCoeffs’, the polynomial expansion coefficients (PCE moments) of the ROM. These
are listed by each polynomial combination, with the polynomial order tags listed in the order
of the variables shown in the XML print.
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15.3.4 HDMRRom

The HDMRRom sub-type contains a single ROM type, based on a Sobol decomposition scheme.
In Sobol decomposition, also known as high-density model reduction (HDMR, specifically Cut-
HDMR), a model is approximated as as the sum of increasing-complexity interactions. At its
lowest level (order 1), it treats the function as a sum of the reference case plus a functional of each
input dimesion separately. At order 2, it adds functionals to consider the pairing of each dimension
with each other dimension. The benefit to this approach is considering several functions of small
input cardinality instead of a single function with large input cardinality. This allows reduced order
models like generalized polynomial chaos (see 15.3.3) to approximate the functionals accurately
with few computations runs. In order to use this ROM, the <ROM> attribute subType needs to be
’HDMRRom’ (see the example below). The HDMRRom is dependent on specific sampling; thus,
this ROM cannot be trained unless a Sobol or similar Sampler specifies this ROM in its input and
is sampled in a MultiRun step. In addition to the common <Target> and <Features>, this
ROM requires the same nodes as the GaussPolynomialRom (see 15.3.3. Additionally, this ROM
requires the <SobolOrder> node.

• <SobolOrder>, integer, required field, indicates the maximum cardinality of the input
space used in the subset functionals. For example, order 1 includes only functionals of each
independent dimension separately, while order 2 considers pair-wise interactions.

Note: This ROM type must be trained from a Sobol decomposition training set. Thus, it can
only be trained from the outcomes of a Sobol sampler. Also, this ROM must be referenced in the
Sobol sampler in order to accurately produce the necessary sparse grid points to train this ROM.
Experience has shown order 2 Sobol decompositions to include the great majority of uncertainty
in most models.

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the HDMRRom ROM.

Example:
<Samplers>

...
<Sobol name="mySobol" parallel="0">
<variable name="x1">

<distribution>myDist1</distribution>
</variable>
<variable name="x2">

<distribution>myDist2</distribution>
</variable>
<ROM class = 'Models' type = 'ROM' >myHDMR</ROM>

</Sobol>
...
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</Samplers>
...
<Models>

...
<ROM name='myHDMR' subType='HDMRRom'>
<Target>ans</Target>
<Features>x1,x2</Features>
<SobolOrder>2</SobolOrder>
<IndexSet>TotalDegree</IndexSet>
<PolynomialOrder>4</PolynomialOrder>
<Interpolation quad='Legendre' poly='Legendre'

weight='1'>x1</Interpolation>
<Interpolation quad='ClenshawCurtis' poly='Jacobi'

weight='2'>x2</Interpolation>
</ROM>
...

</Models>

When Printing this ROM via an OutStream (see 14.2), the available metrics are:

• ’mean’, the mean value of the ROM output within the input space it was trained,

• ’variance’, the ANOVA-calculated variance of the ROM output within the input space
it was trained.

• ’samples’, the number of distinct model runs required to construct the ROM,

• ’indices’, the Sobol sensitivity indices (in percent), Sobol total indices, and partial vari-
ances.

15.3.5 MSR

The MSR sub-type contains a class of ROMs that perform a topological decomposition of the data
into approximately monotonic regions and fits weighted linear patches to the identified monotonic
regions of the input space. Query points have estimated probabilities that they belong to each
cluster. These probabilities can eitehr be used to give a smooth, weighted prediction based on
the associated linear models, or a hard classification to a particular local linear model which is
then used for prediction. Currently, the probability prediction can be done using kernel density
estimation (KDE) or through a one-versus-one support vector machine (SVM).

In order to use this ROM, the <ROM> attribute subType needs to be ’MSR’ (see the associ-
ated example). This model can be initialized with the following children:

• <persistence>, string, optional field, specifies how to define the hierarchical simplifi-
cation by assigning a value to each local minimum and maximum according to the one of
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the strategy options below:

– difference - The function value difference between the extremum and its closest-
valued neighboring saddle.

– probability - The probability integral computed as the sum of the probability of
each point in a cluster divided by the count of the cluster.

– count - The count of points that flow to or from the extremum.

Default: difference

• <gradient>, string, optional field, specifies the method used for estimating the gradient,
available options are:

– steepest

Default: steepest

• <simplification>, float, optional field, specifies the amount of noise reduction to ap-
ply before returning labels.
Default: 0

• <graph> , string, optional field, specifies the type of neighborhood graph used in the
algorithm, available options are:

– beta skeleton

– relaxed beta skeleton

– approximate knn

Default: beta skeleton

• <beta>, float in the range: (0,2], optional field, is only used when the <graph> is set to
beta skeleton or relaxed beta skeleton.
Default: 1.0

• <knn>, integer, optional field, is the number of neighbors when using the approximate
knn for the <graph> sub-node and used to speed up the computation of other graphs
by using the approximate knn graph as a starting point for pruning. -1 means use a fully
connected graph.
Default: -1

• <partitionPredictor>, string, optional, a flag that specifies how the predictions for
query point classification should be performed. Available options are:
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– kde

– svm

Default: kde

• <smooth>, if this node is present, the ROM will blend the estimates of all of the local linear
models weighted by the probability the query point is classified as belonging to that partition
of the input space.

• <kernel>, string, optional field, this option is only used when the <partitionPredictor>
is set to kde and specifies the type of kernel to use in the kernel density estimation. Available
options are:

– uniform

– triangular

– gaussian

– epanechnikov

– biweight or quartic

– triweight

– tricube

– cosine

– logistic

– silverman

– exponential

Default: gaussian

• <bandwidth>, float or string, optional field, this option is only used when the <partitionPredictor>
is set to kde and specifies the scale of the fall-off. A higher bandwidth implies a smooother
blending. If set to variable, then the bandwidth will be set to the distance of the k-nearest
neighbor of the query point where k is set by the <knn> parameter.
Default: 1.

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the MSR ROM.

Example:
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<Simulation>
...
<Models>

...
</ROM>
<ROM name='aUserDefinedName' subType='MSR'>

<Features>var1,var2,var3</Features>
<Target>result1,result2</Target>
<!-- <weighted>true</weighted> -->
<simplification>0.0</simplification>
<persistence>difference</persistence>
<gradient>steepest</gradient>
<graph>beta skeleton</graph>
<beta>1</beta>
<knn>8</knn>
<partitionPredictor>kde</partitionPredictor>
<kernel>gaussian</kernel>
<smooth/>
<bandwidth>0.2</bandwidth>

</ROM>
...

</Models>
...

</Simulation>

15.3.6 NDinvDistWeight

The NDinvDistWeight sub-type contains a single ROM type, based on an N -dimensional in-
verse distance weighting formulation. Inverse distance weighting (IDW) is a type of deterministic
method for multivariate interpolation with a known scattered set of points. The assigned values to
unknown points are calculated via a weighted average of the values available at the known points.

In order to use this Reduced Order Model, the <ROM> attribute subType needs to be xml-
StringNDinvDistWeight (see the example below). This model can be initialized with the following
child:

• <p>, integer, required field, must be greater than zero and represents the “power param-
eter”. For the choice of value for <p>,it is necessary to consider the degree of smoothing
desired in the interpolation/extrapolation, the density and distribution of samples being inter-
polated, and the maximum distance over which an individual sample is allowed to influence
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the surrounding ones (lower p means greater importance for points far away).

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the NDinvDistWeight ROM:

X′ =
(X− µ)

σ
(5)

Example:

<Simulation>
...
<Models>

...
<ROM name='aUserDefinedName' subType='NDinvDistWeight'>

<Features>var1,var2,var3</Features>
<Target>result1,result2</Target>
<p>3</p>
</ROM>
...

</Models>
...

</Simulation>

15.3.7 SciKitLearn

The SciKitLearn sub-type represents the container of several ROMs available in RAVEN through
the external library scikit-learn [4].

In order to use this Reduced Order Model, the <ROM> attribute subType needs to be
’SciKitLearn’ (i.e. subType=’SciKitLearn’). The specifications of a ’SciKitLearn’
ROM depend on the value assumed by the following sub-node within the main <ROM> XML node:

• <SKLtype>, vertical bar (|) separated string, required field, contains a string that repre-
sents the ROM type to be used. As mentioned, its format is:
<SKLtype>mainSKLclass|algorithm</SKLtype> where the first word (before
the “|” symbol) represents the main class of algorithms, and the second word (after the “|”
symbol) represents the specific algorithm.
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Based on the <SKLtype> several different algorithms are available. Note: for HistorySet’s
’SciKitLearn’ performs the task given in <SKLtype> for each time step, and only syn-
chronized HistorySet can be used as input to this ROM. For unsynchronized HistorySet, use
’HistorySetSync’ method in ’Interfaced’ post-processor to synchronize the input data
before using ’SciKitLearn’.

In the following paragraphs a brief explanation and the input requirements are reported for each
of them.

15.3.7.1 Linear Models

The LinearModels’ algorithms implement generalized linear models. They include Ridge regres-
sion, Bayesian regression, lasso, and elastic net estimators computed with least angle regression
and coordinate descent. This class also implements stochastic gradient descent related algorithms.
In the following, all of the linear models available in RAVEN are reported.

15.3.7.1.1 Linear Model: Automatic Relevance Determination Regression
The Automatic Relevance Determination (ARD) regressor is a hierarchical Bayesian approach
where hyperparameters explicitly represent the relevance of different input features. These rele-
vance hyperparameters determine the range of variation for the parameters relating to a particular
input, usually by modelling the width of a zero-mean Gaussian prior on those parameters. If the
width of the Gaussian is zero, then those parameters are constrained to be zero, and the correspond-
ing input cannot have any effect on the predictions, therefore making it irrelevant. ARD optimizes
these hyperparameters to discover which inputs are relevant. In order to use the Automatic Rele-
vance Determination regressor, the user needs to set the sub-node:

<SKLtype>linear model|ARDRegression</SKLtype>.

In addition to this XML node, several others are available: .

• <n iter>, integer, optional field, is the maximum number of iterations.
Default: 300

• <tol>, float, optional field, stop the algorithm if the convergence error felt below the tol-
erance specified here.
Default: 1.e-3

• <alpha 1>, float, optional field, is a shape hyperparameter for the Gamma distribution
prior over the α parameter.
Default: 1.e-6
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• <alpha 2>, float, optional field, inverse scale hyperparameter (rate parameter) for the
Gamma distribution prior over the α parameter.
Default: 1.e-6

• <lambda 1>, float, optional field, shape hyperparameter for the Gamma distribution prior
over the λ parameter.
Default: 1.e-6

• <lambda 2>, float, optional field, inverse scale hyperparameter (rate parameter) for the
Gamma distribution prior over the λ parameter.
Default: 1.e-6

• <compute score>, boolean, optional field, if True, compute the objective function at
each step of the model.
Default: False

• <threshold lambda>, float, optional field, specifies the threshold for removing (prun-
ing) weights with high precision from the computation.
Default: 1.e+4

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the ARDRegression ROM.

15.3.7.1.2 Linear Model: Bayesian ridge regression

The Bayesian ridge regression estimates a probabilistic model of the regression problem as
described above. The prior for the parameter w is given by a spherical Gaussian:

p(w|λ) = N (w|0, λ−1Ip) (6)

The priors over α and λ are chosen to be gamma distributions, the conjugate prior for the precision
of the Gaussian. The resulting model is called Bayesian ridge regression, and is similar to the
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classical ridge regression. The parameters w, α, and λ are estimated jointly during the fit of the
model. The remaining hyperparameters are the parameters of the gamma priors over α and λ.
These are usually chosen to be non-informative. The parameters are estimated by maximizing the
marginal log likelihood. In order to use the Bayesian ridge regressor, the user needs to set the
sub-node:

<SKLtype>linear model|BayesianRidge</SKLtype>.

In addition to this XML node, several others are available:

• <n iter>, integer, optional field, is the maximum number of iterations.
Default: 300

• <tol>, float, optional field, stop the algorithm if the convergence error felt below the tol-
erance specified here.
Default: 1.e-3

• <alpha 1>, float, optional field, is a shape hyperparameter for the Gamma distribution
prior over the α parameter.
Default: 1.e-6

• <alpha 2>, float, optional field, inverse scale hyperparameter (rate parameter) for the
Gamma distribution prior over the α parameter.
Default: 1.e-6

• <lambda 1>, float, optional field, shape hyperparameter for the Gamma distribution prior
over the λ parameter.
Default: 1.e-6

• <lambda 2>, float, optional field, inverse scale hyperparameter (rate parameter) for the
Gamma distribution prior over the λ parameter.
Default: 1.e-6

• <compute score>, boolean, optional field, if True, compute the objective function at
each step of the model.
Default: False

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False
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• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the BayesianRidge ROM.

15.3.7.1.3 Linear Model: Elastic Net
The Elastic Net is a linear regression technique with combined L1 and L2 priors as regularizers. It
minimizes the objective function:

1/(2∗nsamples)∗ ||y−Xw||22 +alpha∗ l1 ratio∗ ||w||1 +0.5∗alpha∗ (1− l1 ratio)∗ ||w||22 (7)

In order to use the Elastic Net regressor, the user needs to set the sub-node:

<SKLtype>linear model|ElasticNet</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, specifies a constant that multiplies the penalty terms. alpha =
0 is equivalent to an ordinary least square, solved by the LinearRegression object.
Default: 1.0

• <l1 ratio>, float, optional field, specifies the ElasticNet mixing parameter, with 0 <=
l1 ratio <= 1. For l1 ratio = 0 the penalty is an L2 penalty. For l1 ratio = 1 it is an L1
penalty. For 0 < l1 ratio < 1, the penalty is a combination of L1 and L2.
Default: 0.5

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 1000

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4
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• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

• <positive>, boolean, optional field, when set to True, this forces the coefficients to be
positive.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the ElasticNet ROM.

15.3.7.1.4 Linear Model: Elastic Net CV
The Elastic Net CV is a linear regression similar to the Elastic Net model but with an iterative
fitting along a regularization path. The best model is selected by cross-validation.

In order to use the Elastic Net CV regressor, the user needs to set the sub-node:

<SKLtype>linear model|ElasticNetCV</SKLtype>.

In addition to this XML node, several others are available:

• <l1 ratio>, float, optional field, Float flag between 0 and 1 passed to ElasticNet (scaling
between l1 and l2 penalties). For l1 ratio = 0 the penalty is an L2 penalty. For l1 ratio = 1
it is an L1 penalty. For 0 < l1 ratio < 1, the penalty is a combination of L1 and L2 This
parameter can be a list, in which case the different values are tested by cross-validation and
the one giving the best prediction score is used. Note that a good choice of list of values for
l1 ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as
in [.1, .5, .7, .9, .95, .99, 1].
Default: 0.5

• <eps>, float, optional field, specifies the length of the path. eps=1e-3 means that alpha min/alpha max =
1e− 3.
Default: 0.001

• <n alphas>, integer, optional field, is the number of alphas along the regularization path
used for each l1 ratio.
Default: 100

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: ’auto’
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• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 1000

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <positive>, boolean, optional field, when set to True, this forces the coefficients to be
positive.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the ElasticNetCV ROM.

15.3.7.1.5 Linear Model: Least Angle Regression model
The Least Angle Regression model (LARS) is a regression algorithm for high-dimensional data.
The LARS algorithm provides a means of producing an estimate of which variables to include,
as well as their coefficients, when a response variable is determined by a linear combination of a
subset of potential covariates.

In order to use the Least Angle Regression model, the user needs to set the sub-node:

<SKLtype>linear model|Lars</SKLtype>.

In addition to this XML node, several others are available:

• <n nonzero coefs>, integer, optional field, represents the target number of non-zero
coefficients.
Default: 500

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
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array-like].
Default: ’auto’

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: True

• <eps>, float, optional field, represents the machine precision regularization in the computa-
tion of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike
the <tol> parameter in some iterative optimization-based algorithms, this parameter does
not control the tolerance of the optimization.
Default: 2.2204460492503131e-16

• <fit path>, boolean, optional field, if True the full path is stored in the coef path attribute.
If you compute the solution for a large problem or many targets, setting fit path to False will
lead to a speedup, especially with a small alpha.
Default: True

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the Lars ROM.

15.3.7.1.6 Linear Model: Cross-validated Least Angle Regression model
The Cross-validated Least Angle Regression model is a regression algorithm for high-dimensional
data. It is similar to the LARS method, but the best model is selected by cross-validation. In order
to use the Cross-validated Least Angle Regression model, the user needs to set the sub-node:

<SKLtype>linear model|LarsCV</SKLtype>.

In addition to this XML node, several others are available:

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: True
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• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: ’auto’

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 500

• <max n alphas>, integer, optional field, specifies the maximum number of points on the
path used to compute the residuals in the cross-validation.
Default: 1000

• <eps>, float, optional field, represents the machine-precision regularization in the computa-
tion of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike
the tol parameter in some iterative optimization-based algorithms, this parameter does not
control the tolerance of the optimization.
Default: 2.2204460492503131e-16

15.3.7.1.7 Linear Model trained with L1 prior as regularizer (aka the Lasso)
The Linear Model trained with L1 prior as regularizer (Lasso) is a shrinkage and selection method
for linear regression. It minimizes the usual sum of squared errors, with a bound on the sum of
the absolute values of the coefficients. In order to use the Linear Model trained with L1 prior as
regularizer (Lasso), the user needs to set the sub-node:

<SKLtype>linear model|Lasso</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, sets a constant multiplier for the L1 term. alpha = 0 is
equivalent to an ordinary least square, solved by the LinearRegression object. For numerical
reasons, using alpha = 0 with the Lasso object is not advised and you should instead use the
LinearRegression object.
Default: 1.0

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False
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• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: False Note: For sparse input this option is always True to preserve sparsity.

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 1000

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

• <positive>, boolean, optional field, when set to True, this forces the coefficients to be
positive.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the LarsCV ROM.

15.3.7.1.8 Lasso linear model with iterative fitting along a regularization path

The Lasso linear model with iterative fitting along a regularization path is an algorithm of the
Lasso family, that computes the linear regressor weights, identifying the regularization path in an
iterative fitting (see http://www.jstatsoft.org/v33/i01/paper)

In order to use the Lasso linear model with iterative fitting along a regularization path regres-
sor, the user needs to set the sub-node:

<SKLtype>linear model|LassoCV</SKLtype>.

In addition to this XML node, several others are available:

• <eps>, float, optional field, represents the length of the path. eps=1e-3 means that al-
pha min / alpha max = 1e-3.
Default: 1.0e-3
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• <n alphas>, int, optional field, sets the number of alphas along the regularization path.
Default: 100

• <alphas>, numpy array, optional field, lists the locations of the alphas used to compute
the models.
Default: None If None, alphas are set automatically.

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: ’auto’

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 1000

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: False

• <positive>, boolean, optional field, when set to True, this forces the coefficients to be
positive.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the LassoCV ROM.

15.3.7.1.9 Lasso model fit with Least Angle Regression

Lasso model fit with Least Angle Regression (aka Lars) It is a Linear Model trained with an L1
prior as regularizer. In order to use the Least Angle Regression model regressor, the user needs to
set the sub-node In order to use the Least Angle Regression model regressor, the user needs to set
the sub-node:

<SKLtype>linear model|LassoLars</SKLtype>.

In addition to this XML node, several others are available:
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• <alpha>, float, optional field, specifies a constant that multiplies the penalty terms. alpha =
0 is equivalent to an ordinary least square, solved by the LinearRegression object.
Default: 1.0

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: False

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: True

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: ’auto’

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 500

• <eps>, float, optional field, sets the machine precision regularization in the computation of
the Cholesky diagonal factors. Increase this for very ill-conditioned systems.
Default: 2.2204460492503131e-16

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the LassoLars ROM.

15.3.7.1.10 Cross-validated Lasso, using the LARS algorithm

The Cross-validated Lasso, using the LARS algorithm is a cross-validated Lasso, using the
LARS algorithm.

In order to use the Cross-validated Lasso, using the LARS algorithm regressor, the user needs
to set the sub-node:

<SKLtype>linear model|LassoLarsCV</SKLtype>.

In addition to this XML node, several others are available:
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• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: False

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: True

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: ’auto’

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 500

• <max n alphas>, integer, optional field, specifies the maximum number of points on the
path used to compute the residuals in the cross-validation.
Default: 1000

• <eps>, float, optional field, specifies the machine precision regularization in the computa-
tion of the Cholesky diagonal factors. Increase this for very ill-conditioned systems.
Default: 2.2204460492503131e-16

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the LassoLarsCV ROM.

15.3.7.1.11 Lasso model fit with Lars using BIC or AIC for model selection

The Lasso model fit with Lars using BIC or AIC for model selection is a Lasso model fit with
Lars using BIC or AIC for model selection. The optimization objective for Lasso is: (1/(2 ∗
n samples)) ∗ ||y − Xw||22 + alpha ∗ ||w||1 AIC is the Akaike information criterion and BIC is
the Bayes information criterion. Such criteria are useful in selecting the value of the regularization
parameter by making a trade-off between the goodness of fit and the complexity of the model. A
good model explains the data well while maintaining simplicity. In order to use the Lasso model
fit with Lars using BIC or AIC for model selection regressor, the user needs to set the sub-node:

<SKLtype>linear model|LassoLarsIC</SKLtype>.

271



In addition to this XML node, several others are available:

• <criterion>, ‘bic’ — ‘aic’ , specifies the type of criterion to use.
Default: ’aic’

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: False

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: True

• <precompute>, boolean or string, optional field, determines whether to use a precom-
puted Gram matrix to speed up calculations. If set to ‘auto,’ RAVEN will decide. The Gram
matrix can also be passed as an argument. Available options are [True — False — ‘auto’ —
array-like].
Default: ’auto’

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 500

• <eps>, float, optional field, represents the machine precision regularization in the computa-
tion of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike
the tol parameter in some iterative optimization-based algorithms, this parameter does not
control the tolerance of the optimization.
Default: 2.2204460492503131e-16

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the LassoLarsIC ROM.

15.3.7.1.12 Ordinary least squares Linear Regression

The Ordinary least squares Linear Regression is a method for estimating the unknown parame-
ters in a linear regression model, with the goal of minimizing the differences between the observed
responses in some arbitrary dataset and the responses predicted by the linear approximation of
the data. In order to use the Ordinary least squares Linear Regressor, the user needs to set the
sub-node:
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<SKLtype>linear model|LinearRegression</SKLtype>.

In addition to this XML node, several others are available:

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the LinearRegression ROM.

15.3.7.1.13 Logistic Regression
The Logistic Regression implements L1 and L2 regularized logistic regression using the liblinear
library. It can handle both dense and sparse input. This regressor uses C-ordered arrays or CSR
matrices containing 64-bit floats for optimal performance; any other input format will be converted
(and copied). In order to use the Logistic Regressor, the user needs to set the sub-node:

<SKLtype>linear model|LogisticRegression</SKLtype>.

In addition to this XML node, several others are available:

• <penalty>, string, ‘l1’ or ‘l2’, specifies the norm used in the penalization.
Default: ’l2’

• <dual>, boolean, specifies the dual or primal formulation. Dual formulation is only imple-
mented for the l2 penalty. Prefer dual=False when n samples > n features.
Default: False

• <C>, float, optional field, is the inverse of the regularization strength; must be a positive
float. Like in support vector machines, smaller values specify stronger regularization.
Default: 1.0

• <fit intercept>, boolean, specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.
Default: True
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• <intercept scaling>, float, optional field, when self.fit intercept is True, instance
vector x becomes [x, self.intercept scaling], i.e. a “synthetic” feature with constant value
equal to intercept scaling is appended to the instance vector. The intercept becomes inter-
cept scaling * synthetic feature weight. Note: The synthetic feature weight is subject to
l1/l2 regularization as are all other features. To lessen the effect of regularization on syn-
thetic feature weight (and therefore on the intercept) intercept scaling has to be increased.
Default: 1.0

• <class weight>, dict, or ’balanced’, optional Weights associated with classes in the
form {class label: weight}. If not given, all classes are supposed to have weight one. The
“balanced” mode uses the values of y to automatically adjust weights inversely proportional
to class frequencies in the input data as n samples / (n classes * np.bincount(y)) Note that
these weights will be multiplied with sample weight (passed through the fit method) if sam-
ple weight is specified. New in version 0.17: class weight=’balanced’ instead of deprecated
class weight=’auto’.
Default: None

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: None

• <tol>, float, optional field, specifies the tolerance for stopping criteria.
Default: 0.0001

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the LogisticRegression ROM:

X′ =
(X− µ)

σ
(8)

15.3.7.1.14 Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
The Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer is a regressor where the
optimization objective for Lasso is: (1/(2∗n samples))∗||Y −XW ||2Fro+alpha∗||W ||21 Where:
||W ||21 =

∑
i

√∑
j w

2
ij i.e. the sum of norm of each row. In order to use the Multi-task Lasso

model trained with L1/L2 mixed-norm as regularizer regressor, the user needs to set the sub-node:

<SKLtype>linear model|MultiTaskLasso</SKLtype>.

In addition to this XML node, several others are available:
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• <alpha>, float, optional field, sets the constant multiplier for the L1/L2 term.
Default: 1.0

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: 1000

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the MultiTaskLasso ROM.

15.3.7.1.15 Multi-task Elastic Net model trained with L1/L2 mixed-norm as regularizer

The Multi-task Elastic Net model trained with L1/L2 mixed-norm as regularizer is a regres-
sor where the optimization objective for MultiTaskElasticNet is: (1/(2 ∗ n samples)) ∗ ||Y −
XW ||Fro2 + alpha ∗ l1 ratio ∗ ||W ||21 + 0.5 ∗ alpha ∗ (1− l1 ratio) ∗ ||W ||2Fro Where: ||W ||21 =∑

i

√∑
j w

2
ij i.e. the sum of norm of each row. In order to use the Multi-task ElasticNet model

trained with L1/L2 mixed-norm as regularizer regressor, the user needs to set the sub-node:

<SKLtype>linear model|MultiTaskElasticNet</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, represents a constant multiplier for the L1/L2 term.
Default: 1.0
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• <l1 ratio>, float, represents the Elastic Net mixing parameter, with 0 < l1 ratio ≤ 1.
For l1 ratio = 0 the penalty is an L1/L2 penalty. For l1 ratio = 1 it is an L1 penalty. For
0 < l1 ratio < 1, the penalty is a combination of L1/L2 and L2.
Default: 0.5

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <max iter>, integer, optional field, specifies the maximum number of iterations.

• <tol>, float, optional field, specifies the tolerance for the optimization: if the updates are
smaller than tol, the optimization code checks the dual gap for optimality and continues until
it is smaller than tol.
Default: 1.e-4

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the MultiTaskElasticNet ROM.

15.3.7.1.16 Orthogonal Mathching Pursuit model (OMP)

The Orthogonal Mathching Pursuit model (OMP) is a type of sparse approximation which
involves finding the “best matching” projections of multidimensional data onto an over-complete
dictionary, D. In order to use the Orthogonal Mathching Pursuit model (OMP) regressor, the user
needs to set the sub-node:

<SKLtype>linear model|OrthogonalMatchingPursuit</SKLtype>.

In addition to this XML node, several others are available:

• <n nonzero coefs>, int, optional field, represents the desired number of non-zero en-
tries in the solution. If None, this value is set to 10% of n features.
Default: None
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• <tol>, float, optional field, specifies the maximum norm of the residual. If not None,
overrides n nonzero coefs.
Default: None

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: True

• <precompute>, {True, False, ‘auto’}, specifies whether to use a precomputed Gram and
Xy matrix to speed up calculations. Improves performance when n targets or n samples is
very large. Note: If you already have such matrices, you can pass them directly to the fit
method.
Default: ‘auto’

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the OrthogonalMatchingPursuit ROM.

15.3.7.1.17 Cross-validated Orthogonal Mathching Pursuit model (OMP)

The Cross-validated Orthogonal Mathching Pursuit model (OMP) is a regressor similar to
OMP which has good performance in sparse recovery. In order to use the Cross-validated Or-
thogonal Mathching Pursuit model (OMP) regressor, the user needs to set the sub-node:

<SKLtype>linear model|OrthogonalMatchingPursuitCV</SKLtype>.

In addition to this XML node, several others are available:

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: True

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: None Maximum number of iterations to perform, therefore maximum features to
include 10% of n features but at least 5 if available.
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• <cv>, cross-validation generator, optional, see sklearn.cross validation.
Default: None

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the OrthogonalMatchingPursuitCV ROM.

15.3.7.1.18 Passive Aggressive Classifier
The Passive Aggressive Classifier is a principled approach to linear classification that advocates
minimal weight updates i.e., the least required to correctly classify the current training instance.
In order to use the Passive Aggressive Classifier, the user needs to set the sub-node:

<SKLtype>linear model|PassiveAggressiveClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <C>, float, specifies the maximum step size (regularization).
Default: 1.0

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: True

• <n iter no change>, integer, optional field, number of iterations with no improvement
to wait before early stopping.
Default: 5

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: None

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: 0

• <loss>, string, optional field, the loss function to be used:
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– hinge: equivalent to PA-I (http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf)

– squared hinge: equivalent to PA-II (http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf)

Default: ’hinge’

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the PassiveAggressiveClassifier ROM:

X′ =
(X− µ)

σ
(9)

15.3.7.1.19 Passive Aggressive Regressor
The Passive Aggressive Regressor is similar to the Perceptron in that it does not require a learning
rate. However, contrary to the Perceptron, this regressor includes a regularization parameter, C.

In order to use the Passive Aggressive Regressor, the user needs to set the sub-node:

<SKLtype>linear model|PassiveAggressiveRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <C>, float, sets the maximum step size (regularization).
Default: 1.0

• <epsilon>, float, if the difference between the current prediction and the correct label is
below this threshold, the model is not updated.
Default: 0.1

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <n iter>, int, optional field, specifies the number of passes over the training data (aka
epochs).
Default: 5
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• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: True

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: None

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: 0

• <loss>, string, optional field, specifies the loss function to be used:

– epsilon insensitive: equivalent to PA-I in the reference paper (http://jmlr.csail.mit.edu/papers/volume7
/crammer06a/crammer06a.pdf).

– squared epsilon insensitive: equivalent to PA-II in the reference paper (http://jmlr.csail.mit.edu/papers
/volume7/crammer06a/crammer06a.pdf).

Default: ’epsilon insensitive’

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the PassiveAggressiveRegressor ROM:

X′ =
(X− µ)

σ
(10)

15.3.7.1.20 Perceptron

The Perceptron method is an algorithm for supervised classification of an input into one of
several possible non-binary outputs. It is a type of linear classifier, i.e. a classification algorithm
that makes its predictions based on a linear predictor function combining a set of weights with the
feature vector. The algorithm allows for online learning, in that it processes elements in the training
set one at a time. In order to use the Perceptron classifier, the user needs to set the sub-node:

<SKLtype>linear model|Perceptron</SKLtype>.

In addition to this XML node, several others are available:
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• <penalty>, None, ‘l2’ or ‘l1’ or ‘elasticnet’, defines the penalty (aka regularization term)
to be used.
Default: None

• <alpha>, float, sets the constant multiplier for the regularization term if regularization is
used.
Default: 0.0001

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <n iter no change>, integer, optional field, number of iterations with no improvement
to wait before early stopping.
Default: 5

• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: True

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: 0

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: 0

• <eta0>, double, optional field, defines the constant multiplier for the updates.
Default: 1.0

• <class weight>, dict, {class label: weight} or “balanced” or None, optional Preset
for the class weight fit parameter. Weights associated with classes. If not given, all classes
are supposed to have weight one. The “balanced” mode uses the values of y to automatically
adjust weights inversely proportional to class frequencies in the input data as n samples /
(n classes * np.bincount(y))

• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the PassiveAggressiveRegressor ROM:

X′ =
(X− µ)

σ
(11)
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15.3.7.1.21 Linear least squares with l2 regularization
The Linear least squares with l2 regularization solves a regression model where the loss function
is the linear least squares function and the regularization is given by the l2-norm. Also known as
Ridge Regression or Tikhonov regularization. This estimator has built-in support for multivariate
regression (i.e., when y is a 2d-array of shape [n samples, n targets]). In order to use the Linear
least squares with l2 regularization, the user needs to set the sub-node:

<SKLtype>linear model|Ridge</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, array-like, shape = [n targets] Small positive values of alpha improve the
conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to
(2 ∗ C)−1 in other linear models such as LogisticRegression or LinearSVC. If an array is
passed, penalties are assumed to be specific to the targets. Hence they must correspond in
number.
Default: 1.0

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <n iter no change>, integer, optional field, number of iterations with no improvement
to wait before early stopping.
Default: 5

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: determined by scipy.sparse.linalg.

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <solver>, {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse cg’}, specifies the solver to use in the
computational routines:

– ‘auto’ chooses the solver automatically based on the type of data.

– ‘svd’ uses a singular value decomposition of X to compute the ridge coefficients. More
stable for singular matrices than ‘cholesky.’

– ‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solu-
tion.
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– ‘sparse cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an
iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale data
(possibility to set tol and max iter).

– ‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It
is the fatest but may not be available in old scipy versions. It also uses an iterative
procedure.

All three solvers support both dense and sparse data.
Default: ‘auto’

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the Ridge ROM.

15.3.7.1.22 Classifier using Ridge regression

The Classifier using Ridge regression is a classifier based on linear least squares with l2 regu-
larization. In order to use the Classifier using Ridge regression, the user needs to set the sub-node:

<SKLtype>linear model|RidgeClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, small positive values of alpha improve the conditioning of the problem and
reduce the variance of the estimates. Alpha corresponds to (2 ∗ C)−1 in other linear models
such as LogisticRegression or LinearSVC.
Default: 1.0

• <class weight>, dict, optional field, specifies weights associated with classes in the
form class label: weight. If not given, all classes are assumed to have weight one.
Default: None

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: determined by scipy.sparse.linalg.

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False
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• <solver>, {‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse cg’}, specifies the solver to use in the
computational routines:

– ‘auto’ chooses the solver automatically based on the type of data.

– ‘svd’ uses a singular value decomposition of X to compute the ridge coefficients. More
stable for singular matrices than ‘cholesky.’

– ‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solu-
tion.

– ‘sparse cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an
iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale data
(possibility to set tol and max iter).

– ‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It
is the fatest but may not be available in old scipy versions. It also uses an iterative
procedure.

All three solvers support both dense and sparse data.
Default: ‘auto’

• <tol>, float, defines the required precision of the solution.
Default: 0.001

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the RidgeClassifier ROM.

15.3.7.1.23 Ridge classifier with built-in cross-validation
The Ridge classifier with built-in cross-validation performs Generalized Cross-Validation, which is
a form of efficient leave-one-out cross-validation. Currently, only the n features > n samples case
is handled efficiently. In order to use the Ridge classifier with built-in cross-validation classifier,
the user needs to set the sub-node:

<SKLtype>linear model|RidgeClassifierCV</SKLtype>.

In addition to this XML node, several others are available:

• <alphas>, numpy array of shape [n alphas], is an array of alpha values to try. Small pos-
itive values of alpha improve the conditioning of the problem and reduce the variance of the
estimates. Alpha corresponds to (2∗C)−1 in other linear models such as LogisticRegression
or LinearSVC.
Default: (0.1, 1.0, 10.0)
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• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <scoring>, string, callable or None, optional, is a string (see model evaluation documen-
tation) or a scorer callable object / function with signature scorer(estimator, X, y).
Default: None

• <cv>, cross-validation generator, optional, If None, Generalized Cross-Validation (effi-
cient leave-one-out) will be used.
Default: None

• <class weight>, dic, optional field, specifies weights associated with classes in the form
class label:weight. If not given, all classes are supposed to have weight one.
Default: None

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the RidgeClassifierCV ROM.

15.3.7.1.24 Ridge regression with built-in cross-validation

The Ridge regression with built-in cross-validation performs Generalized Cross-Validation,
which is a form of efficient leave-one-out cross-validation. In order to use the Ridge regression
with built-in cross-validation regressor, the user needs to set the sub-node:

<SKLtype>linear model|RidgeCV</SKLtype>.

In addition to this XML node, several others are available:

• <alphas>, numpy array of shape [n alphas], specifies an array of alpha values to try.
Small positive values of alpha improve the conditioning of the problem and reduce the vari-
ance of the estimates. Alpha corresponds to (2 ∗ C)−1 in other linear models such as Logis-
ticRegression or LinearSVC.
Default: (0.1, 1.0, 10.0)

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
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expected to be already centered).
Default: True

• <normalize>, boolean, optional field, if True, the regressors X will be normalized before
regression.
Default: False

• <scoring>, string, callable or None, optional, is a string (see model evaluation documen-
tation) or a scorer callable object / function with signature scorer(estimator, X, y).
Default: None

• <cv>, cross-validation generator, optional field, if None, Generalized Cross-Validation
(efficient leave-one-out) will be used.
Default: None

• <gcv mode>, {None, ‘auto,’ ‘svd,’ ‘eigen’}, optional field, is a flag indicating which strat-
egy to use when performing Generalized Cross-Validation. Options are:

– ‘auto:’ use svd if n samples ¿ n features or when X is a sparse matrix, otherwise use
eigen

– ‘svd:’ force computation via singular value decomposition of X (does not work for
sparse matrices)

– ‘eigen:’ force computation via eigendecomposition of XTX

The ‘auto’ mode is the default and is intended to pick the cheaper option of the two depend-
ing upon the shape and format of the training data.
Default: None

• <store cv values>, boolean, is a flag indicating if the cross-validation values corre-
sponding to each alpha should be stored in the cv values attribute (see below). This flag is
only compatible with cv=None (i.e. using Generalized Cross-Validation).
Default: False

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the RidgeCV ROM.

15.3.7.1.25 Linear classifiers (SVM, logistic regression, a.o.) with SGD training

The Linear classifiers (SVM, logistic regression, a.o.) with SGD training implements regu-
larized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is
estimated for each sample at a time and the model is updated along the way with a decreasing
strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the
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partial fit method. This implementation works with data represented as dense or sparse arrays of
floating point values for the features. The model it fits can be controlled with the loss parameter; by
default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss
function that shrinks model parameters towards the zero vector using either the squared Euclidean
norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update
crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning
sparse models and achieves online feature selection. In order to use the Linear classifiers (SVM,
logistic regression, a.o.) with SGD training, the user needs to set the sub-node:

<SKLtype>linear model|SGDClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <loss>, str, ‘hinge,’ ‘log,’ ‘modified huber,’ ‘squared hinge,’ ‘perceptron,’ or a regres-
sion loss: ‘squared loss,’ ‘huber,’ ‘epsilon insensitive,’ or ‘squared epsilon insensitive’,
dictates the loss function to be used. The available options are:

– ‘hinge’ gives a linear SVM.

– ‘log’ loss gives logistic regression, a probabilistic classifier.

– ‘modified huber’ is another smooth loss that brings tolerance to outliers as well as
probability estimates.

– ‘squared hinge’ is like hinge but is quadratically penalized.

– ‘perceptron’ is the linear loss used by the perceptron algorithm.

The other losses are designed for regression but can be useful in classification as well; see
SGDRegressor for a description.
Default: ‘hinge’

• <penalty>, str, ‘l2’ or ‘l1’ or ‘elasticnet’, defines the penalty (aka regularization term) to
be used. ‘l2’ is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ might
bring sparsity to the model (feature selection) not achievable with ‘l2.’
Default: ‘l2’

• <alpha>, float, is the constant multiplier for the regularization term.
Default: 0.0001

• <l1 ratio>, float, is the Elastic Net mixing parameter, with 0 ¡= l1 ratio ¡= 1. l1 ratio=0
corresponds to L2 penalty, l1 ratio=1 to L1.
Default: 0.15

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True
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• <n iter no change>, integer, optional field, number of iterations with no improvement
to wait before early stopping.
Default: 5

• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: True

• <random state>, int seed, RandomState instance, or None, represents the seed of the
pseudo random number generator to use when shuffling the data for probability estimation.
Default: None

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: 0

• <epsilon>, float, optional field, varies meaning depending on the value of <loss>. If
loss is ‘huber’, ‘epsilon insensitive’ or ‘squared epsilon insensitive’ then this is the epsilon
in the epsilon-insensitive loss functions. For ‘huber’, determines the threshold at which
it becomes less important to get the prediction exactly right. For ‘epsilon insensitive, any
differences between the current prediction and the correct label are ignored if they are less
than this threshold.
Default: 0.1

• <learning rate>, string, optional field, specifies the learning rate:

– ‘constant:’ eta = eta0

– ‘optimal:’ eta = 1.0 / (t + t0)

– ‘invscaling:’ eta = eta0 / pow(t, power t)

Default: ‘optimal’

• <eta0>, double, specifies the initial learning rate for the ‘constant’ or ‘invscaling’ sched-
ules. The default value is 0.0 as eta0 is not used by the default schedule ‘optimal.’
Default: 0.0

• <power t>, double, represents the exponent for the inverse scaling learning rate.
Default: 0.5

• <class weight>, dict, class label, is the preset for the class weight fit parameter. Weights
associated with classes. If not given, all classes are assumed to have weight one. The “auto”
mode uses the values of y to automatically adjust weights inversely proportional to class
frequencies.
Default: None

288



• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the SGDClassifier ROM:

X′ =
(X− µ)

σ
(12)

15.3.7.1.26 Linear model fitted by minimizing a regularized empirical loss with SGD
The Linear model fitted by minimizing a regularized empirical loss with SGD is a model where
SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at
a time and the model is updated along the way with a decreasing strength schedule (aka learning
rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards
the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combina-
tion of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer,
the update is truncated to 0.0 to allow for learning sparse models and achieving online feature
selection. This implementation works with data represented as dense numpy arrays of floating
point values for the features. In order to use the Linear model fitted by minimizing a regularized
empirical loss with SGD, the user needs to set the sub-node:

<SKLtype>linear model|SGDRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <loss>, str, ‘squared loss,’ ‘huber,’ ‘epsilon insensitive,’ or ‘squared epsilon insensitive’,
specifies the loss function to be used. Defaults to ‘squared loss’ which refers to the ordinary
least squares fit. ‘huber’ modifies ‘squared loss’ to focus less on getting outliers correct by
switching from squared to linear loss past a distance of epsilon. ‘epsilon insensitive’ ig-
nores errors less than epsilon and is linear past that; this is the loss function used in SVR.
‘squared epsilon insensitive’ is the same but becomes squared loss past a tolerance of ep-
silon.
Default: ‘squared loss’

• <penalty>, str, ‘l2’ or ‘l1’ or ‘elasticnet’, sets the penalty (aka regularization term) to
be used. Defaults to ‘l2’ which is the standard regularizer for linear SVM models. ‘l1’ and
‘elasticnet’ might bring sparsity to the model (feature selection) not achievable with ‘l2’.
Default: ‘l2’

• <alpha>, float, Constant that multiplies the regularization term. Defaults to 0.0001
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• <l1 ratio>, float, is the Elastic Net mixing parameter, with 0 ≤ l1 ratio ≤ 1. l1 ratio=0
corresponds to L2 penalty, l1 ratio=1 to L1.
Default: 0.15

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <n iter no change>, integer, optional field, number of iterations with no improvement
to wait before early stopping.
Default: 5

• <shuffle>, boolean, optional field, specifies whether or not the training data should be
shuffled after each epoch.
Default: True

• <random state>, int seed, RandomState instance, or None, sets the seed of the pseudo
random number generator to use when shuffling the data.
Default: None

• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: 0

• <epsilon>, float, sets the epsilon in the epsilon-insensitive loss functions; only if loss is
‘huber,’ ‘epsilon insensitive,’ or ‘squared epsilon insensitive.’ For ‘huber’, determines the
threshold at which it becomes less important to get the prediction exactly right. For epsilon-
insensitive, any differences between the current prediction and the correct label are ignored
if they are less than this threshold.
Default: 0.1

• <learning rate>, string, optional field, Learning rate:

– constant: eta = eta0

– optimal: eta = 1.0/(t+t0)

– invscaling: eta= eta0 / pow(t, power t)

Default: invscaling

• <eta0>, double, specifies the initial learning rate.
Default: 0.01

• <power t>, double, optional field, specifies the exponent for inverse scaling learning rate.

Default: 0.25
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• <warm start>, boolean, optional field, when set to True, the model will reuse the solution
of the previous call to fit as initialization, otherwise, it will just erase the previous solution.
Default: False

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the SGDRegressor ROM:

X′ =
(X− µ)

σ
(13)

15.3.7.2 Support Vector Machines

In machine learning, Support Vector Machines (SVMs, also support vector networks) are super-
vised learning models with associated learning algorithms that analyze data and recognize patterns,
used for classification and regression analysis. Given a set of training examples, each marked as
belonging to one of two categories, an SVM training algorithm builds a model that assigns new
examples into one category or the other, making it a non-probabilistic binary linear classifier. An
SVM model is a representation of the examples as points in space, mapped so that the examples
of the separate categories are divided by a clear gap that is as wide as possible. New examples are
then mapped into that same space and predicted to belong to a category based on which side of the
gap they fall on. In addition to performing linear classification, SVMs can efficiently perform a
non-linear classification using what is called the kernel trick, implicitly mapping their inputs into
high-dimensional feature spaces.
It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the SVM-based ROM:

X′ =
(X− µ)

σ
(14)

In the following, all the SVM models available in RAVEN are reported.

15.3.7.2.1 Linear Support Vector Classifier
The Linear Support Vector Classifier is similar to SVC with parameter kernel=‘linear’, but imple-
mented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties
and loss functions and should scale better (to large numbers of samples). This class supports both
dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme.
In order to use the Linear Support Vector Classifier, the user needs to set the sub-node:

<SKLtype>svm|LinearSVC</SKLtype>.
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In addition to this XML node, several others are available:

• <C>, float, optional field, sets the penalty parameter C of the error term.
Default: 1.0

• <loss>, string, ‘hinge’ or ‘squared hinge’, specifies the loss function. ‘hinge’ is the hinge
loss (standard SVM) while ‘squared hinge’ is the squared hinge loss.
Default: ‘squared hinge’

• <penalty>, string, ‘l1’ or ‘l2’, specifies the norm used in the penalization. The ‘l2’
penalty is the standard used in SVC. The ‘l1’ leads to coef vectors that are sparse.
Default: ‘l2’

• <dual>, boolean, selects the algorithm to either solve the dual or primal optimization prob-
lem. Prefer dual=False when n samples > n features.
Default: True

• <tol>, float, optional field, specifies the tolerance for stopping criteria.
Default: 1e-4

• <multi class>, string, ‘ovr’ or ‘crammer singer’, Determines the multi-class strategy
if y contains more than two classes. ovr trains n classes one-vs-rest classifiers, while cram-
mer singer optimizes a joint objective over all classes. While crammer singer is interesting
from a theoretical perspective as it is consistent, it is seldom used in practice and rarely leads
to better accuracy and is more expensive to compute. If crammer singer is chosen, the op-
tions loss, penalty and dual will be ignored.
Default: ‘ovr’

• <fit intercept>, boolean, optional field, determines whether to calculate the intercept
for this model. If set to False, no intercept will be used in the calculations (e.g. data is
expected to be already centered).
Default: True

• <intercept scaling>, float, optional field, when True, the instance vector x becomes
[x,self.intercept scaling], i.e. a “synthetic” feature with constant value equals to intercept scaling
is appended to the instance vector. The intercept becomes intercept scaling * synthetic fea-
ture weight. Note: The synthetic feature weight is subject to l1/l2 regularization as are all
other features. To lessen the effect of regularization on the synthetic feature weight (and
therefore on the intercept) intercept scaling has to be increased.
Default: 1

• <class weight>, dict, ‘auto’, optional, sets the parameter C of class i to class weight[i]*C
for SVC. If not given, all classes are assumed to have weight one. The ‘auto’ mode uses the
values of y to automatically adjust weights inversely proportional to class frequencies.
Default: None
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• <verbose>, boolean or integer, optional field, use verbose mode when fitting the model.
Default: 0 Note: This setting takes advantage of a per-process runtime setting in liblinear
that, if enabled, may not work properly in a multithreaded context.

• <random state>, int seed, RandomState instance, or None, represents the seed of the
pseudo random number generator to use when shuffling the data for probability estimation.
Default: None

15.3.7.2.2 C-Support Vector Classification
The C-Support Vector Classification is a based on libsvm. The fit time complexity is more than
quadratic with the number of samples which makes it hard to scale to datasets with more than a
couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme.
In order to use the C-Support Vector Classifier, the user needs to set the sub-node:

<SKLtype>svm|SVC</SKLtype>.

In addition to this XML node, several others are available:

• <C>, float, optional field, sets the penalty parameter C of the error term.
Default: 1.0

• <kernel>, string, optional, specifies the kernel type to be used in the algorithm. It must
be one of:

– ‘linear’

– ‘poly’

– ‘rbf’

– ‘sigmoid’

– ‘precomputed’

– a callable object

If a callable is given it is used to pre-compute the kernel matrix.
Default: ‘rbf’

• <degree>, int, optional field, determines the degree of the polynomial kernel function
(‘poly’). Ignored by all other kernels.
Default: 3.0

• <gamma>, float, optional field, sets the kernel coefficient for the kernels ‘rbf,’ ‘poly,’ and
‘sigmoid.’ If gamma is ‘auto’ then 1/n features will be used instead.
Default: ‘auto’
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• <coef0>, float, optional field, is an independent term in kernel function. It is only signifi-
cant in ‘poly’ and ‘sigmoid.’
Default: 0.0

• <probability>, boolean, optional field, determines whether or not to enable probability
estimates. This must be enabled prior to calling fit, and will slow down that method.
Default: False

• <shrinking>, boolean, optional field, determines whether or not to use the shrinking
heuristic.
Default: True

• <tol>, float, optional field, specifies the tolerance for stopping criteria.
Default: 1e-3

• <cache size>, float, optional field, specifies the size of the kernel cache (in MB).

• <class weight>, dict, ‘auto’, optional, sets the parameter C of class i to class weight[i]*C
for SVC. If not given, all classes are assumed to have weight one. The ‘auto’ mode uses the
values of y to automatically adjust weights inversely proportional to class frequencies.
Default: None

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False Note: This setting takes advantage of a per-process runtime setting in libsvm
that, if enabled, may not work properly in a multithreaded context.

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: -1

• <random state>, int seed, RandomState instance, or None, represents the seed of the
pseudo random number generator to use when shuffling the data for probability estimation.
Default: None

15.3.7.2.3 Nu-Support Vector Classification

The Nu-Support Vector Classification is similar to SVC but uses a parameter to control the
number of support vectors. The implementation is based on libsvm. In order to use the Nu-
Support Vector Classifier, the user needs to set the sub-node:

<SKLtype>svm|NuSVC</SKLtype>.

In addition to this XML node, several others are available:

• <nu>, float, optional field, is an upper bound on the fraction of training errors and a lower
bound of the fraction of support vectors. Should be in the interval (0, 1].
Default: 0.5
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• <kernel>, string, optional, specifies the kernel type to be used in the algorithm. It must
be one of:

– ‘linear’

– ‘poly’

– ‘rbf’

– ‘sigmoid’

– ‘precomputed’

– a callable object

If a callable is given it is used to pre-compute the kernel matrix.
Default: ‘rbf’

• <degree>, int, optional field, determines the degree of the polynomial kernel function
(‘poly’). Ignored by all other kernels.
Default: 3

• <gamma>, float, optional field, sets the kernel coefficient for the kernels ‘rbf,’ ‘poly,’ and
‘sigmoid.’ If gamma is ‘auto’ then 1/n features will be used instead.
Default: ‘auto’

• <coef0>, float, optional field, is an independent term in kernel function. It is only signifi-
cant in ‘poly’ and ‘sigmoid.’
Default: 0.0

• <probability>, boolean, optional field, determines whether or not to enable probability
estimates. This must be enabled prior to calling fit, and will slow down that method.
Default: False

• <shrinking>, boolean, optional field, determines whether or not to use the shrinking
heuristic.
Default: True

• <tol>, float, optional field, specifies the tolerance for stopping criteria.
Default: 1e-3

• <cache size>, float, optional field, specifies the size of the kernel cache (in MB).

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False Note: This setting takes advantage of a per-process runtime setting in libsvm
that, if enabled, may not work properly in a multithreaded context.

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: -1
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• <random state>, int seed, RandomState instance, or None, represents the seed of the
pseudo random number generator to use when shuffling the data for probability estimation.
Default: None

15.3.7.2.4 Support Vector Regression
The Support Vector Regression is an epsilon-Support Vector Regression. The free parameters in
this model are C and epsilon. The implementations is a based on libsvm. In order to use the
Support Vector Regressor, the user needs to set the sub-node:

<SKLtype>svm|SVR</SKLtype>.

In addition to this XML node, several others are available:

• <C>, float, optional field, sets the penalty parameter C of the error term.
Default: 1.0

• <epsilon>, float, optional field, specifies the epsilon-tube within which no penalty is
associated in the training loss function with points predicted within a distance epsilon from
the actual value.
Default: 0.1

• <kernel>, string, optional, specifies the kernel type to be used in the algorithm. It must
be one of:

– ‘linear’

– ‘poly’

– ‘rbf’

– ‘sigmoid’

– ‘precomputed’

– a callable object

If a callable is given it is used to pre-compute the kernel matrix.
Default: ‘rbf’

• <degree>, int, optional field, determines the degree of the polynomial kernel function
(‘poly’). Ignored by all other kernels.
Default: 3.0

• <gamma>, float, optional field, sets the kernel coefficient for the kernels ‘rbf,’ ‘poly,’ and
‘sigmoid.’ If gamma is ‘auto’ then 1/n features will be used instead.
Default: ‘auto’
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• <coef0>, float, optional field, is an independent term in kernel function. It is only signifi-
cant in ‘poly’ and ‘sigmoid.’
Default: 0.0

• <shrinking>, boolean, optional field, determines whether or not to use the shrinking
heuristic.
Default: True

• <tol>, float, optional field, specifies the tolerance for stopping criteria.
Default: 1e-3

• <cache size>, float, optional field, specifies the size of the kernel cache (in MB).

• <verbose>, boolean, optional field, use verbose mode when fitting the model.
Default: False Note: This setting takes advantage of a per-process runtime setting in libsvm
that, if enabled, may not work properly in a multithreaded context.

• <max iter>, integer, optional field, specifies the maximum number of iterations.
Default: -1

15.3.7.3 Multi Class

Multiclass classification means a classification task with more than two classes; e.g., classify a set
of images of fruits which may be oranges, apples, or pears. Multiclass classification makes the
assumption that each sample is assigned to one and only one label: a fruit can be either an apple or
a pear but not both at the same time.

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the multi-class-based ROM.

In the following, all the multi-class models available in RAVEN are reported.

15.3.7.3.1 One-vs-the-rest (OvR) multiclass/multilabel strategy

The One-vs-the-rest (OvR) multiclass/multilabel strategy, also known as one-vs-all, consists in
fitting one classifier per class. For each classifier, the class is fitted against all the other classes.
In addition to its computational efficiency (only n classes classifiers are needed), one advantage of
this approach is its interpretability. Since each class is represented by one and one classifier only,
it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is
the most commonly used strategy and is a fair default choice.

In order to use the One-vs-the-rest (OvR) multiclass/multilabel classifier, the user needs to set
the sub-node:
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<SKLtype>multiClass|OneVsRestClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <estimator>, boolean, required field, An estimator object implementing fit and one of
decision function or predict proba. This XML node needs to contain the following attribute:

– estimatorType, required string attribute, this attribute is another reduced order
mode type that needs to be used for the construction of the multi-class algorithms.
Each sub-sequential node depends on the chosen ROM.

15.3.7.3.2 One-vs-one multiclass strategy

The One-vs-one multiclass strategy consists in fitting one classifier per class pair. At predic-
tion time, the class which received the most votes is selected. Since it requires to fit n classes
* (n classes - 1) / 2 classifiers, this method is usually slower than one-vs-the-rest, due to its
O(n classes2) complexity. However, this method may be advantageous for algorithms such as
kernel algorithms which do not scale well with n samples. This is because each individual learn-
ing problem only involves a small subset of the data whereas, with one-vs-the-rest, the complete
dataset is used n classes times.

In order to use the One-vs-one multiclass classifier, the user needs to set the sub-node:

<SKLtype>multiClass|OneVsOneClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <estimator>, boolean, required field, An estimator object implementing fit and one of
decision function or predict proba. This XML node needs to contain the following attribute:

– estimatorType, required string attribute, this attribute is another reduced order
mode type that needs to be used for the construction of the multi-class algorithms.
Each sub-sequential node depends on the chosen ROM.

15.3.7.3.3 Error-Correcting Output-Code multiclass strategy
The Error-Correcting Output-Code multiclass strategy consists in representing each class with a
binary code (an array of 0s and 1s). At fitting time, one binary classifier per bit in the code book
is fitted. At prediction time, the classifiers are used to project new points in the class space and the
class closest to the points is chosen. The main advantage of these strategies is that the number of
classifiers used can be controlled by the user, either for compressing the model (0 < code size <
1) or for making the model more robust to errors (code size > 1).
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In order to use the Error-Correcting Output-Code multiclass classifier, the user needs to set the
sub-node:

<SKLtype>multiClass|OutputCodeClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <estimator>, boolean, required field, An estimator object implementing fit and one of
decision function or predict proba. This XML node needs to contain the following attribute:

– estimatorType, required string attribute, this attribute is another reduced order
mode type that needs to be used for the construction of the multi-class algorithms.
Each sub-sequential node depends on the chosen ROM.

• <code size>, float, required field, represents the percentage of the number of classes to
be used to create the code book. A number between 0 and 1 will require fewer classifiers than
one-vs-the-rest. A number greater than 1 will require more classifiers than one-vs-the-rest.

15.3.7.4 Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem
with the “naive” assumption of independence between every pair of features. Given a class variable
y and a dependent feature vector x 1 through x n, Bayes’ theorem states the following relationship:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . xn | y)

P (x1, . . . , xn)
(15)

Using the naive independence assumption that

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y), (16)

for all i, this relationship is simplified to

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
(17)

Since P (x1, . . . , xn) is constant given the input, we can use the following classification rule:

P (y | x1, . . . , xn) ∝ P (y)
n∏
i=1

P (xi | y) ⇓ (18)

ŷ = arg max
y
P (y)

n∏
i=1

P (xi | y), (19)
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and we can use Maximum A Posteriori (MAP) estimation to estimate P (y) and P (xi | y); the
former is then the relative frequency of class y in the training set. The different naive Bayes
classifiers differ mainly by the assumptions they make regarding the distribution of P (xi | y).

In spite of their apparently over-simplified assumptions, naive Bayes classifiers have worked
quite well in many real-world situations, famously document classification and spam filtering.
They require a small amount of training data to estimate the necessary parameters. (For theoret-
ical reasons why naive Bayes works well, and on which types of data it does, see the references
below.) Naive Bayes learners and classifiers can be extremely fast compared to more sophisticated
methods. The decoupling of the class conditional feature distributions means that each distribution
can be independently estimated as a one dimensional distribution. This in turn helps to alleviate
problems stemming from the curse of dimensionality.

On the flip side, although naive Bayes is known as a decent classifier, it is known to be a bad
estimator, so the probability outputs from predict proba are not to be taken too seriously. In the
following, all the Naive Bayes available in RAVEN are reported.

15.3.7.4.1 Gaussian Naive Bayes
The Gaussian Naive Bayes strategy implements the Gaussian Naive Bayes algorithm for classifi-
cation. The likelihood of the features is assumed to be Gaussian:

P (xi | y) =
1√

2πσ2
y

exp

(
−(xi − µy)2

2σ2
y

)
(20)

The parameters σy and µy are estimated using maximum likelihood.

In order to use the Gaussian Naive Bayes strategy, the user needs to set the sub-node:

<SKLtype>naiveBayes|GaussianNB</SKLtype>.

There are no additional sub-nodes available for this method.

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the GaussianNB ROM:

X′ =
(X− µ)

σ
(21)

15.3.7.4.2 Multinomial Naive Bayes
The Multinomial Naive Bayes implements the naive Bayes algorithm for multinomially distributed
data, and is one of the two classic naive Bayes variants used in text classification (where the data is
typically represented as word vector counts, although tf-idf vectors are also known to work well in
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practice). The distribution is parametrized by vectors θy = (θy1, . . . , θyn) for each class y, where n
is the number of features (in text classification, the size of the vocabulary) and θyi is the probability
P (xi | y) of feature i appearing in a sample belonging to class y. The parameters θy are estimated
by a smoothed version of maximum likelihood, i.e. relative frequency counting:

θ̂yi =
Nyi + α

Ny + αn
(22)

whereNyi =
∑

x∈T xi is the number of times feature i appears in a sample of class y in the training
set T, and Ny =

∑|T |
i=1Nyi is the total count of all features for class y. The smoothing priors

α ≥ 0 account for features not present in the learning samples and prevents zero probabilities in
further computations. Setting α = 1 is called Laplace smoothing, while α < 1 is called Lidstone
smoothing. In order to use the Multinomial Naive Bayes strategy, the user needs to set the sub-
node:

<SKLtype>naiveBayes|MultinomialNB</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, specifies an additive (Laplace/Lidstone) smoothing param-
eter (0 for no smoothing).
Default: 1.0

• <fit prior>, boolean, required field, determines whether to learn class prior probabili-
ties or not. If false, a uniform prior will be used.
Default: True

• <class prior>, array-like float (n classes), optional field, specifies prior probabilities
of the classes. If specified, the priors are not adjusted according to the data.
Default: None

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the MultinomialNB ROM.

15.3.7.4.3 Bernoulli Naive Bayes
The Bernoulli Naive Bayes implements the naive Bayes training and classification algorithms for
data that is distributed according to multivariate Bernoulli distributions; i.e., there may be multiple
features but each one is assumed to be a binary-valued (Bernoulli, boolean) variable. Therefore,
this class requires samples to be represented as binary-valued feature vectors; if handed any other
kind of data, a Bernoulli Naive Bayes instance may binarize its input (depending on the binarize
parameter). The decision rule for Bernoulli naive Bayes is based on

P (xi | y) = P (i | y)xi + (1− P (i | y))(1− xi) (23)
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which differs from multinomial NB’s rule in that it explicitly penalizes the non-occurrence of a
feature i that is an indicator for class y, where the multinomial variant would simply ignore a
non-occurring feature. In the case of text classification, word occurrence vectors (rather than word
count vectors) may be used to train and use this classifier. Bernoulli Naive Bayes might perform
better on some datasets, especially those with shorter documents. It is advisable to evaluate both
models, if time permits. In order to use the Bernoulli Naive Bayes strategy, the user needs to set
the sub-node:

<SKLtype>naiveBayes|BernoulliNB</SKLtype>.

In addition to this XML node, several others are available:

• <alpha>, float, optional field, specifies an additive (Laplace/Lidstone) smoothing param-
eter (0 for no smoothing).
Default: 1.0

• <binarize>, float, optional field, Threshold for binarizing (mapping to booleans) of sam-
ple features. If None, input is presumed to already consist of binary vectors.
Default: 0.0

• <fit prior>, boolean, required field, determines whether to learn class prior probabili-
ties or not. If false, a uniform prior will be used.
Default: True

• <class prior>, array-like float (n classes), optional field, specifies prior probabilities
of the classes. If specified, the priors are not adjusted according to the data.
Default: None

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the BernoulliNB ROM:

X′ =
(X− µ)

σ
(24)

15.3.7.5 Neighbors

The Neighbors class provides functionality for unsupervised and supervised neighbor-based learn-
ing methods. The unsupervised nearest neighbors method is the foundation of many other learning
methods, notably manifold learning and spectral clustering. Supervised neighbors-based learn-
ing comes in two flavors: classification for data with discrete labels, and regression for data with
continuous labels.
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The principle behind nearest neighbor methods is to find a predefined number of training sam-
ples closest in distance to the new point, and predict the label from these. The number of samples
can be a user-defined constant (k-nearest neighbor learning), or vary based on the local density
of points (radius-based neighbor learning). The distance can, in general, be any metric measure:
standard Euclidean distance is the most common choice. Neighbor-based methods are known as
non-generalizing machine learning methods, since they simply “remember” all of its training data
(possibly transformed into a fast indexing structure such as a Ball Tree or KD Tree.).

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the Neighbors-based ROM:

X′ =
(X− µ)

σ
(25)

In the following, all the Neighbors’ models available in RAVEN are reported.

15.3.7.5.1 K Neighbors Classifier
The K Neighbors Classifier is a type of instance-based learning or non-generalizing learning: it
does not attempt to construct a general internal model, but simply stores instances of the training
data. Classification is computed from a simple majority vote of the nearest neighbors of each
point: a query point is assigned the data class which has the most representatives within the nearest
neighbors of the point. It implements learning based on the k nearest neighbors of each query point,
where k is an integer value specified by the user.

In order to use the K Neighbors Classifier, the user needs to set the sub-node:

<SKLtype>neighbors|KNeighborsClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <n neighbors>, integer, optional field, specifies the number of neighbors to use by de-
fault for ‘k neighbors’ queries.
Default: 5

• <weights>, string, optional field, specifies the weight function used in prediction. Possi-
ble values:

– uniform : uniform weights. All points in each neighborhood are weighted equally;

– distance : weight points by the inverse of their distance. In this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.
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Default: uniform

• <algorithm>, string, optional field, specifies the algorithm used to compute the nearest
neighbors:

– ball tree will use BallTree.

– kd tree will use KDtree.

– brute will use a brute-force search.

– auto will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: Fitting on sparse input will override the setting of this parameter, using brute force.
Default: auto

• <leaf size>, integer, optional field, sets the leaf size passed to the BallTree or KDTree.
This can affect the speed of the construction and query, as well as the memory required to
store the tree. The optimal value depends on the nature of the problem.
Default: 30

• <metric>, string, optional field, sets the distance metric to use for the tree. The Minkowski
metric with p=2 is equivalent to the standard Euclidean metric.
Default: minkowski

• <p>, integer, optional field, is a parameter for the Minkowski metric. When p = 1, this
is equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For
arbitrary p, minkowski distance (L p) is used.
Default: 2

15.3.7.5.2 Radius Neighbors Classifier
The Radius Neighbors Classifier is a type of instance-based learning or non-generalizing learning:
it does not attempt to construct a general internal model, but simply stores instances of the training
data. Classification is computed from a simple majority vote of the nearest neighbors of each
point: a query point is assigned the data class which has the most representatives within the nearest
neighbors of the point. It implements learning based on the number of neighbors within a fixed
radius r of each training point, where r is a floating-point value specified by the user.

In order to use the Radius Neighbors Classifier, the user needs to set the sub-node:

<SKLtype>neighbors|RadiusNeighbors</SKLtype>.

In addition to this XML node, several others are available:
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• <radius>, float, optional field, specifies the range of parameter space to use by default for
‘radius neighbors’ queries.
Default: 1.0

• <weights>, string, optional field, specifies the weight function used in prediction. Possi-
ble values:

– uniform : uniform weights. All points in each neighborhood are weighted equally;

– distance : weight points by the inverse of their distance. In this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

Default: uniform

• <algorithm>, string, optional field, specifies the algorithm used to compute the nearest
neighbors:

– ball tree will use BallTree.

– kd tree will use KDtree.

– brute will use a brute-force search.

– auto will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: Fitting on sparse input will override the setting of this parameter, using brute force.
Default: auto

• <leaf size>, integer, optional field, sets the leaf size passed to the BallTree or KDTree.
This can affect the speed of the construction and query, as well as the memory required to
store the tree. The optimal value depends on the nature of the problem.
Default: 30

• <metric>, string, optional field, sets the distance metric to use for the tree. The Minkowski
metric with p=2 is equivalent to the standard Euclidean metric.
Default: minkowski

• <p>, integer, optional field, is a parameter for the Minkowski metric. When p = 1, this
is equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For
arbitrary p, minkowski distance (L p) is used.
Default: 2

• <outlier label>, integer, optional field, is a label, which is given for outlier samples
(samples with no neighbors on a given radius). If set to None, ValueError is raised, when an
outlier is detected.
Default: None
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15.3.7.5.3 K Neighbors Regressor

The K Neighbors Regressor can be used in cases where the data labels are continuous rather
than discrete variables. The label assigned to a query point is computed based on the mean of the
labels of its nearest neighbors. It implements learning based on the k nearest neighbors of each
query point, where k is an integer value specified by the user.

In order to use the K Neighbors Regressor, the user needs to set the sub-node:

<SKLtype>neighbors|KNeighborsRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <n neighbors>, integer, optional field, specifies the number of neighbors to use by de-
fault for ‘k neighbors’ queries.
Default: 5

• <weights>, string, optional field, specifies the weight function used in prediction. Possi-
ble values:

– uniform : uniform weights. All points in each neighborhood are weighted equally;

– distance : weight points by the inverse of their distance. In this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

Default: uniform

• <algorithm>, string, optional field, specifies the algorithm used to compute the nearest
neighbors:

– ball tree will use BallTree.

– kd tree will use KDtree.

– brute will use a brute-force search.

– auto will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: Fitting on sparse input will override the setting of this parameter, using brute force.
Default: auto

• <leaf size>, integer, optional field, sets the leaf size passed to the BallTree or KDTree.
This can affect the speed of the construction and query, as well as the memory required to
store the tree. The optimal value depends on the nature of the problem.
Default: 30
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• <metric>, string, optional field, sets the distance metric to use for the tree. The Minkowski
metric with p=2 is equivalent to the standard Euclidean metric.
Default: minkowski

• <p>, integer, optional field, is a parameter for the Minkowski metric. When p = 1, this
is equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For
arbitrary p, minkowski distance (L p) is used.
Default: 2

15.3.7.5.4 Radius Neighbors Regressor

The Radius Neighbors Regressor can be used in cases where the data labels are continuous
rather than discrete variables. The label assigned to a query point is computed based on the mean
of the labels of its nearest neighbors. It implements learning based on the neighbors within a fixed
radius r of the query point, where r is a floating-point value specified by the user.

In order to use the Radius Neighbors Regressor, the user needs to set the sub-node:

<SKLtype>neighbors|RadiusNeighborsRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <radius>, float, optional field, specifies the range of parameter space to use by default for
‘radius neighbors’ queries.
Default: 1.0

• <weights>, string, optional field, specifies the weight function used in prediction. Possi-
ble values:

– uniform : uniform weights. All points in each neighborhood are weighted equally;

– distance : weight points by the inverse of their distance. In this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

Default: uniform

• <algorithm>, string, optional field, specifies the algorithm used to compute the nearest
neighbors:

– ball tree will use BallTree.

– kd tree will use KDtree.

– brute will use a brute-force search.

– auto will attempt to decide the most appropriate algorithm based on the values passed
to fit method.
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Note: Fitting on sparse input will override the setting of this parameter, using brute force.
Default: auto

• <leaf size>, integer, optional field, sets the leaf size passed to the BallTree or KDTree.
This can affect the speed of the construction and query, as well as the memory required to
store the tree. The optimal value depends on the nature of the problem.
Default: 30

• <metric>, string, optional field, sets the distance metric to use for the tree. The Minkowski
metric with p=2 is equivalent to the standard Euclidean metric.
Default: minkowski

• <p>, integer, optional field, is a parameter for the Minkowski metric. When p = 1, this
is equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For
arbitrary p, minkowski distance (L p) is used.
Default: 2

15.3.7.5.5 Nearest Centroid Classifier

The Nearest Centroid classifier is a simple algorithm that represents each class by the centroid
of its members. It also has no parameters to choose, making it a good baseline classifier. It does,
however, suffer on non-convex classes, as well as when classes have drastically different variances,
as equal variance in all dimensions is assumed.

In order to use the Nearest Centroid Classifier, the user needs to set the sub-node:

<SKLtype>neighbors|NearestCentroid</SKLtype>.

In addition to this XML node, several others are available:

• <shrink threshold>, float, optional field, defines the threshold for shrinking centroids
to remove features.
Default: None

The Quadratic Discriminant Analysis is a classifier with a quadratic decision boundary, gen-
erated by fitting class conditional densities to the data and using Bayes’ rule. The model fits a
Gaussian density to each class.

In order to use the Quadratic Discriminant Analysis Classifier, the user needs to set the sub-
node:

<SKLtype>qda|QDA</SKLtype>.

In addition to this XML node, several others are available:
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• <priors>, array-like (n classes), optional field, specifies the priors on the classes.
Default: None

• <reg param>, float, optional field, regularizes the covariance estimate as (1-reg param)*Sigma
+ reg param*Identity(n features).
Default: 0.0

It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the QDA ROM.

15.3.7.6 Tree

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and
regression. The goal is to create a model that predicts the value of a target variable by learning
simple decision rules inferred from the data features.

• Some advantages of decision trees are:

• Simple to understand and to interpret. Trees can be visualized.

• Requires little data preparation. Other techniques often require data normalization, dummy
variables need to be created and blank values to be removed. Note however, that this module
does not support missing values.

• The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points
used to train the tree.

• Able to handle both numerical and categorical data. Other techniques are usually specialized
in analyzing datasets that have only one type of variable.

• Able to handle multi-output problems.

• Uses a white box model. If a given situation is observable in a model, the explanation for
the condition is easily explained by boolean logic. By contrast, in a black box model (e.g.,
in an artificial neural network), results may be more difficult to interpret.

• Possible to validate a model using statistical tests. That makes it possible to account for the
reliability of the model.

• Performs well even if its assumptions are somewhat violated by the true model from which
the data were generated.

The disadvantages of decision trees include:
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• Decision-tree learners can create over-complex trees that do not generalise the data well.
This is called overfitting. Mechanisms such as pruning (not currently supported), setting the
minimum number of samples required at a leaf node or setting the maximum depth of the
tree are necessary to avoid this problem.

• Decision trees can be unstable because small variations in the data might result in a com-
pletely different tree being generated. This problem is mitigated by using decision trees
within an ensemble.

• The problem of learning an optimal decision tree is known to be NP-complete under several
aspects of optimality and even for simple concepts. Consequently, practical decision-tree
learning algorithms are based on heuristic algorithms such as the greedy algorithm where
locally optimal decisions are made at each node. Such algorithms cannot guarantee to return
the globally optimal decision tree. This can be mitigated by training multiple trees in an
ensemble learner, where the features and samples are randomly sampled with replacement.

• There are concepts that are hard to learn because decision trees do not express them easily,
such as XOR, parity or multiplexer problems.

• Decision tree learners create biased trees if some classes dominate. It is therefore recom-
mended to balance the dataset prior to fitting with the decision tree.

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the tree-based ROM:

X′ =
(X− µ)

σ
(26)

In the following, all the tree-based algorithms available in RAVEN are reported.

15.3.7.6.1 Decision Tree Classifier
The Decision Tree Classifier is a classifier that is based on the decision tree logic.

In order to use the Decision Tree Classifier, the user needs to set the sub-node:

<SKLtype>tree|DecisionTreeClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <criterion>, string, optional field, specifies the function used to measure the quality of
a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information
gain.
Default: gini
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• <splitter>, string, optional field, specifies the strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.
Default: best

• <max features>, int, float or string, optional field, sets the number of features to con-
sider when looking for the best split:

– If int, then consider max features features at each split.

– If float, then max features is a percentage and int(max features * n features) features
are considered at each split.

– If “auto,” then max features=sqrt(n features).

– If “sqrt,” then max features=sqrt(n features).

– If “log2,” then max features=log2(n features).

– If None, then max features=n features.

Note: The search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max features features.
Default: None

• <max depth>, integer, optional field, determines the maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples. Ignored if max samples leaf is not None.
Default: None

• <min samples split>, integer, optional field, sets the minimum number of samples
required to split an internal node.
Default: 2

• <min samples leaf>, integer, optional field, sets the minimum number of samples re-
quired to be at a leaf node.
Default: 1

• <max leaf nodes>, integer, optional field, grow a tree with max leaf nodes in best-first
fashion. Best nodes are defined by relative reduction in impurity. If None then unlimited
number of leaf nodes. If not None then max depth will be ignored.
Default: None

15.3.7.6.2 Decision Tree Regressor
The Decision Tree Regressor is a Regressor that is based on the decision tree logic. In order to
use the Decision Tree Regressor, the user needs to set the sub-node:

<SKLtype>tree|DecisionTreeRegressor</SKLtype>.
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In addition to this XML node, several others are available:

• <criterion>, string, optional field, specifies the function used to measure the quality of
a split. The only supported criterion is “mse” for mean squared error.
Default: mse

• <splitter>, string, optional field, specifies the strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.
Default: best

• <max features>, int, float or string, optional field, sets the number of features to con-
sider when looking for the best split:

– If int, then consider max features features at each split.

– If float, then max features is a percentage and int(max features * n features) features
are considered at each split.

– If “auto,” then max features=sqrt(n features).

– If “sqrt,” then max features=sqrt(n features).

– If “log2,” then max features=log2(n features).

– If None, then max features=n features.

Note: The search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max features features.
Default: None

• <max depth>, integer, optional field, determines the maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples. Ignored if max samples leaf is not None.
Default: None

• <min samples split>, integer, optional field, sets the minimum number of samples
required to split an internal node.
Default: 2

• <min samples leaf>, integer, optional field, sets the minimum number of samples re-
quired to be at a leaf node.
Default: 1

• <max leaf nodes>, integer, optional field, grow a tree with max leaf nodes in best-first
fashion. Best nodes are defined by relative reduction in impurity. If None then unlimited
number of leaf nodes. If not None then max depth will be ignored.
Default: None
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15.3.7.6.3 Extra Tree Classifier
The Extra Tree Classifier is an extremely randomized tree classifier. Extra-trees differ from classic
decision trees in the way they are built. When looking for the best split to separate the samples of
a node into two groups, random splits are drawn for each of the max features randomly selected
features and the best split among those is chosen. When max features is set 1, this amounts to
building a totally random decision tree.

In order to use the Extra Tree Classifier, the user needs to set the sub-node:

<SKLtype>tree|ExtraTreeClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <criterion>, string, optional field, specifies the function used to measure the quality of
a split. Supported criteria are “gini” for the Gini impurity and “entropy” for the information
gain.
Default: gini

• <splitter>, string, optional field, specifies the strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.
Default: random

• <max features>, int, float or string, optional field, sets the number of features to con-
sider when looking for the best split:

– If int, then consider max features features at each split.

– If float, then max features is a percentage and int(max features * n features) features
are considered at each split.

– If “auto,” then max features=sqrt(n features).

– If “sqrt,” then max features=sqrt(n features).

– If “log2,” then max features=log2(n features).

– If None, then max features=n features.

Note: The search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max features features.
Default: auto

• <max depth>, integer, optional field, determines the maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples. Ignored if max samples leaf is not None.
Default: None
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• <min samples split>, integer, optional field, sets the minimum number of samples
required to split an internal node.
Default: 2

• <min samples leaf>, integer, optional field, sets the minimum number of samples re-
quired to be at a leaf node.
Default: 1

• <max leaf nodes>, integer, optional field, grow a tree with max leaf nodes in best-first
fashion. Best nodes are defined by relative reduction in impurity. If None then unlimited
number of leaf nodes. If not None then max depth will be ignored.
Default: None

15.3.7.6.4 Extra Tree Regressor

The Extra Tree Regressor is an extremely randomized tree regressor. Extra-trees differ from
classic decision trees in the way they are built. When looking for the best split to separate the
samples of a node into two groups, random splits are drawn for each of the max features randomly
selected features and the best split among those is chosen. When max features is set 1, this amounts
to building a totally random decision tree.

In order to use the Extra Tree Regressor, the user needs to set the sub-node:

<SKLtype>tree|ExtraTreeRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <criterion>, string, optional field, specifies the function used to measure the quality of
a split. The only supported criterion is “mse” for mean squared error.
Default: mse

• <splitter>, string, optional field, specifies the strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.
Default: random

• <max features>, int, float or string, optional field, sets the number of features to con-
sider when looking for the best split:

– If int, then consider max features features at each split.

– If float, then max features is a percentage and int(max features * n features) features
are considered at each split.

– If “auto,” then max features=sqrt(n features).

314



– If “sqrt,” then max features=sqrt(n features).

– If “log2,” then max features=log2(n features).

– If None, then max features=n features.

Note: The search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max features features.
Default: auto

• <max depth>, integer, optional field, determines the maximum depth of the tree. If
None, then nodes are expanded until all leaves are pure or until all leaves contain less than
min samples split samples. Ignored if max samples leaf is not None.
Default: None

• <min samples split>, integer, optional field, sets the minimum number of samples
required to split an internal node.
Default: 2

• <min samples leaf>, integer, optional field, sets the minimum number of samples re-
quired to be at a leaf node.
Default: 1

• <max leaf nodes>, integer, optional field, grow a tree with max leaf nodes in best-first
fashion. Best nodes are defined by relative reduction in impurity. If None then unlimited
number of leaf nodes. If not None then max depth will be ignored.
Default: None

15.3.7.7 Gaussian Process

Gaussian Processes for Machine Learning (GPML) is a generic supervised learning method pri-
marily designed to solve regression problems. The advantages of Gaussian Processes for Machine
Learning are:

• The prediction interpolates the observations (at least for regular correlation models).

• The prediction is probabilistic (Gaussian) so that one can compute empirical confidence
intervals and exceedance probabilities that might be used to refit (online fitting, adaptive
fitting) the prediction in some region of interest.

• Versatile: different linear regression models and correlation models can be specified. Com-
mon models are provided, but it is also possible to specify custom models provided they are
stationary.

The disadvantages of Gaussian Processes for Machine Learning include:
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• It is not sparse. It uses the whole samples/features information to perform the prediction.

• It loses efficiency in high dimensional spaces – namely when the number of features exceeds
a few dozens. It might indeed give poor performance and it loses computational efficiency.

• Classification is only a post-processing, meaning that one first needs to solve a regression
problem by providing the complete scalar float precision output y of the experiment one is
attempting to model.

In order to use the Gaussian Process Regressor, the user needs to set the sub-node:

<SKLtype>GaussianProcess|GaussianProcess</SKLtype>.

In addition to this XML node, several others are available:

• <normalize y>, boolean, optional field, if True, the observations y are centered and
reduced w.r.t. means and standard deviations estimated from the n samples observations
provided.
Default: True

• <optimizer>, string, optional field, specifies the optimization algorithm to be used.
Available optimizers are: ’fmin cobyla’, ’Welch’.
Default: fmin cobyla

• <random state>, integer, optional field, is the seed of the internal random number gen-
erator.
Default: None

• <n restarts optimizer >, integer, optional field, The number of restarts of the opti-
mizer for finding the kernel’s parameters which maximize the log-marginal likelihood. The
first run of the optimizer is performed from th e kernel’s initial parameters, the remaining
ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-
values. If greater than 0, all bounds must be finite. Note that n restarts optimizer == 0
implies that one run is performed.
Default: 0

• <alpha>, float, optional field, Value added to the diagonal of the kernel matrix during
fitting. Larger values correspond to increased noise level in the observations. This can
also prevent a potential numerical issue during fitting, by ensuring that the calculated values
form a positive definite matrix. If an array is passed, it must have the same number of entries
as the data used for fitting and is used as datapoint-dependent noise level. Note that this
is equivalent to adding a WhiteKernel with c=alpha. Allowing to specify the noise level
directly as a parameter is mainly for convenience and for consistency with Ridge.
Default: 1e-10
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It is important to NOTE that RAVEN does not pre-normalize the training data before constructing
the GaussianProcessRegressor ROM.

Example:
<Simulation>

...
<Models>

...
<ROM name='aUserDefinedName' subType='SciKitLearn'>

<Features>var1,var2,var3</Features>
<Target>result1</Target>
<SKLtype>linear_model|LinearRegression</SKLtype>
<fit_intercept>True</fit_intercept>
<normalize>False</normalize>

</ROM>
...

</Models>
...

</Simulation>

15.3.7.8 Neural Network Models

It has been more than 70 years since Warren McCulloch and Water Pitts modeled the first artificial
neural network (ANN) that mimicked the way brains work. These days, deep learning based on
ANN is showing outstanding results for solving a wide variety of robotic tasks in the areas of
perception, planning, localization, and control. Multi-layer Perceptron (MLP) is a supervised
learning algorithm that can learn a non-linear function approximator for either classifcation or
regression. It is different from logistic regression, in that between the input and output layer,
there can be one or more non-linear layers, called hidden layers. The advantages of Multi-layer
Perceptron are:

• Capability to learn non-linear models

• Capability to learn models in real-time (online learning)

The disadvantages of Multi-layer Perceptron include:

• MLP with hidden layers have a non-convex loss function where there exists more than one
local minimum. Therefore different random weight initializations can lead to different vali-
dation accuracy.
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• MLP requires tuning a number of hyperparameters such as the number of hidden neurons,
layers and iterations.

• MLP is sensitive to feature scaling

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the Multi-layer Perceptron ROM:

X′ =
(X− µ)

σ
(27)

In the following, Multi-layer perceptron classification and regression algorithms available in
RAVEN are reported.

15.3.7.8.1 MLPClassifier
The MLPClassifier implements a multi-layer perceptron algorithm that trains using Backpropaga-
tion More precisely, it trains using some form of gradient descent and the gradients are calculated
using Backpropagation. For classification, it minimizes the Cross-Entropy loss function, and it
supports multi-class classification.

In order to use the MLPClassifier, the user needs to set the sub-node:

<SKLtype>neural network|MLPClassifier</SKLtype>.

In addition to this XML node, several others are available:

• <hidden layer sizes>, tuple, length = n layers - 2, optional field, the ith element
represents the number of neurons in the ith hidden layer.
Default: (100,)

• <activation>, string, optional field, activation function for the hidden layer.

– identity, no-op activation, useful to implement linear bottleneck, returns f(x) = x

– logistic, the logistic sigmoid function, returns f(x) = 1/(1+exp(-x))

– tanh, the hyperbolic tan function, returns f(x) = tanh(x)

– relu, the rectified linear function, returns f(x) = max(0, x)

Default: ‘relu’

• <solver>, string, optional field, The solver for weight optimization.
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– lbfgs, is an optimizer in the family of quasi-Newton methods

– sgd, refers to stochastic gradient descent

– adam, refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,
and Jimmy Ba.

Note: The default solver adam works pretty well on relatively large datasets (with thousands
of training samples or more) in terms of both training time and validation score. For small
datasets, however, lbfgs can converge faster and perform better.
Default: ‘adam’

• <alpha>, float, optional field, L2 penalty parameter
Default: 0.0001

• <batch size>, int, optional field, Size of minibatches for stochastic optimizers. If the
solver is lbfgs, the classifier will not use minibatch.
Default: min(200, n samples)
Default: ‘auto’

• <learning rate>, string, optional field, Learning rate schedule for weight updates

– constant, is a constant learning rate given by learning rate init

– invscaling, gradually decreases the learning rate at each time step ‘t’ using an in-
verse scaling exponent of ‘power t’. effective learning rate = learning rate init / pow(t,
power t)

– adaptive, keeps the learning rate constant to ‘learning rate init’ as long as training loss
keeps decreasing. Each time two consecutive epochs fail to decrease training loss by at
least tol, or fail to increase validation score by at least tol if ‘early stopping’ is on, the
current learning rate is divided by 5. Note: Only used when solver = ‘sgd’

Default: ‘constant’

• <learning rate init>, float, optional field, The initial learning rate used. It controls
the step-size in updating the weights. Only used when solver = ‘sgd’ or ‘adam’
Default: 0.001

• <power t>, float, optional field, the exponent for inverse scaling learning rate. It is used in
updating effective learning rate when the learning rate is set to ‘invscaling’. only used when
solver = ‘sgd’
Default: 0.5

• <max iter>, int, optional field, maximum number of iterations. The solver iterates until
convergence (determined by ‘tol’) or this number of iterations. For stochastic solvers (‘sgd’,
‘adam’), note that this determines the number of epochs (how many times each data point
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will be used), not the number of gradient steps
Default: 200

• <shuffle>, bool, optional field, whether to shuffle samples in each iteration. Only used
when solver = ‘sgd’ or ‘adam’
Default: True

• <random state>, int, RandomState instance or None, optional field if int, random state
is the seed used by the random number generator; If RandomState instance, random state is
the random number generator; If None, the random number generator is the RandomState
instance used by np.random.
Default: None

• <tol>, float, optional field, tolerance for optimization. When the loss or score is not im-
proving by at least tol for two consecutive iterations, unless learning rate is set to ‘adaptive’,
convergence is considered to be reached and training stops.
Default: 1e-4

• <verbose>, bool, optional field, whether to print progress messages or stdout
Default: False

• <warm start>, bool, optional field, when set to True, reuse the solution of previous call
to fit as initialization, otherise, just erase the previous solution.
Default: False

• <momentum>, float, optional field, momentum for gradient descent update. Should be
between 0 and 1. Only used when solver = ‘sgd’.
Default: 0.9

• <nesterovs momentum>, bool, optional field, whether to use Nesterov’s momentum.
Only used when solver=’sgd’ and momentum ¿ 0.
Default: True

• <early stopping>, bool, optional field, whether to use early stopping to terminate train-
ing when validation score is not improving. If set to true, it will automatically set aside 10%
of training data as validation and terminate training when validation score is not improving
by at least tol for two consecutive epochs. Only effective when solver=‘sgd’ or ‘adam’.
Default: False

• <validation fraction>, float, optional field, the proportion of training data to set
aside as validation set for early stopping. Must be between 0 and 1. Only used if early stopping
is True.
Default: 0.1

• <beta 1>, float, optional field, exponential decay rate for estimates of first moment vector
in adam. should be in [0, 1). only used when solver = ‘adam’
Default: 0.9
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• <beta 2>, float, optional field, exponentail decay rate for estimates of second moment
vector in adam. should be in [0, 1). only used when solver = ‘adam’
Default: 0.999

• <epsilon>, float, optional field, value for numerical stability in adam. Only used when
solver = ‘adam’
Default: 1e-8

15.3.7.8.2 MLPRegressor
The MLPRegressor implements a multi-layer perceptron algorithm that trains using Backpropa-
gation with no activation function in the output layer, which can also be seen as using the identity
function as activation function. Therefore, it uses the square error as the loss function, and the out-
put is a set of continuous values. MLPRegressor also supports multi-output regression, in which a
sample can have more than one target.

In order to use the MLPRegressor, the user needs to set the sub-node:

<SKLtype>neural network|MLPRegressor</SKLtype>.

In addition to this XML node, several others are available:

• <hidden layer sizes>, tuple, length = n layers - 2, optional field, the ith element
represents the number of neurons in the ith hidden layer.
Default: (100,)

• <activation>, string, optional field, activation function for the hidden layer.

– identity, no-op activation, useful to implement linear bottleneck, returns f(x) = x

– logistic, the logistic sigmoid function, returns f(x) = 1/(1+exp(-x))

– tanh, the hyperbolic tan function, returns f(x) = tanh(x)

– relu, the rectified linear function, returns f(x) = max(0, x)

Default: ‘relu’

• <solver>, string, optional field, The solver for weight optimization.

– lbfgs, is an optimizer in the family of quasi-Newton methods

– sgd, refers to stochastic gradient descent

– adam, refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,
and Jimmy Ba.

321



Note: The default solver adam works pretty well on relatively large datasets (with thousands
of training samples or more) in terms of both training time and validation score. For small
datasets, however, lbfgs can converge faster and perform better.
Default: ‘adam’

• <alpha>, float, optional field, L2 penalty parameter
Default: 0.0001

• <batch size>, int, optional field, Size of minibatches for stochastic optimizers. If the
solver is lbfgs, the classifier will not use minibatch.
Default: min(200, n samples)
Default: ‘auto’

• <learning rate>, string, optional field, Learning rate schedule for weight updates

– constant, is a constant learning rate given by learning rate init

– invscaling, gradually decreases the learning rate at each time step ‘t’ using an in-
verse scaling exponent of ‘power t’. effective learning rate = learning rate init / pow(t,
power t)

– adaptive, keeps the learning rate constant to ‘learning rate init’ as long as training loss
keeps decreasing. Each time two consecutive epochs fail to decrease training loss by at
least tol, or fail to increase validation score by at least tol if ‘early stopping’ is on, the
current learning rate is divided by 5. Note: Only used when solver = ‘sgd’

Default: ‘constant’

• <learning rate init>, float, optional field, The initial learning rate used. It controls
the step-size in updating the weights. Only used when solver = ‘sgd’ or ‘adam’
Default: 0.001

• <power t>, float, optional field, the exponent for inverse scaling learning rate. It is used in
updating effective learning rate when the learning rate is set to ‘invscaling’. only used when
solver = ‘sgd’
Default: 0.5

• <max iter>, int, optional field, maximum number of iterations. The solver iterates until
convergence (determined by ‘tol’) or this number of iterations. For stochastic solvers (‘sgd’,
‘adam’), note that this determines the number of epochs (how many times each data point
will be used), not the number of gradient steps
Default: 200

• <shuffle>, bool, optional field, whether to shuffle samples in each iteration. Only used
when solver = ‘sgd’ or ‘adam’
Default: True
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• <random state>, int, RandomState instance or None, optional field if int, random state
is the seed used by the random number generator; If RandomState instance, random state is
the random number generator; If None, the random number generator is the RandomState
instance used by np.random.
Default: None

• <tol>, float, optional field, tolerance for optimization. When the loss or score is not im-
proving by at least tol for two consecutive iterations, unless learning rate is set to ‘adaptive’,
convergence is considered to be reached and training stops.
Default: 1e-4

• <verbose>, bool, optional field, whether to print progress messages or stdout
Default: False

• <warm start>, bool, optional field, when set to True, reuse the solution of previous call
to fit as initialization, otherise, just erase the previous solution.
Default: False

• <momentum>, float, optional field, momentum for gradient descent update. Should be
between 0 and 1. Only used when solver = ‘sgd’.
Default: 0.9

• <nesterovs momentum>, bool, optional field, whether to use Nesterov’s momentum.
Only used when solver=’sgd’ and momentum ¿ 0.
Default: True

• <early stopping>, bool, optional field, whether to use early stopping to terminate train-
ing when validation score is not improving. If set to true, it will automatically set aside 10%
of training data as validation and terminate training when validation score is not improving
by at least tol for two consecutive epochs. Only effective when solver=‘sgd’ or ‘adam’.
Default: False

• <validation fraction>, float, optional field, the proportion of training data to set
aside as validation set for early stopping. Must be between 0 and 1. Only used if early stopping
is True.
Default: 0.1

• <beta 1>, float, optional field, exponential decay rate for estimates of first moment vector
in adam. should be in [0, 1). only used when solver = ‘adam’
Default: 0.9

• <beta 2>, float, optional field, exponentail decay rate for estimates of second moment
vector in adam. should be in [0, 1). only used when solver = ‘adam’
Default: 0.999
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• <epsilon>, float, optional field, value for numerical stability in adam. Only used when
solver = ‘adam’
Default: 1e-8

15.3.8 SyntheticHistory

The SyntheticHistory sub-type uses various Time Series Analysis (TSA) algorithms to characterize
and reproduce synthetic histories. It is a more general implementation of the ARMA ROM. The
available algorithms are discussed in more detail below. The SyntheticHistory ROM uses the
TSA algorithms to characterize then reproduce time series in sequence; for example, if using
Fourier then ARMA, the SyntheticHistory ROM will characterize the Fourier properties using the
Fourier TSA algorithm on a training signal, then send the residual to the ARMA TSA algorithm
for characterization. Generating new signals works in reverse, first generating a signal using the
ARMA TSA algorithm then superimposing the Fourier TSA algorithm.

In order to use this Reduced Order Model, the <ROM> attribute subType needs to be ’SyntheticHistory’
(see the example below). This model can be initialized with the following child:

• <Features>, comma separated string, required field, defines the features (e.g., scaling).
Note that only one feature is allowed for ’SyntheticHistory’ and in current imple-
mentation this is used for evaluation only.

• <Target>, comma separated string, required field, defines the variable(s) of the time
series. Should include the pivot parameter (or Index).

• <pivotParameter>, string, required field, defines the pivot variable (e.g., time) that is
non-decreasing in the input HistorySet.

In addition, any number of the following TSA algorithms may be included as subnodes of this
ROM:

• <Wavelet> performs a discrete wavelet transform on time-dependent data. Note: This
TSA module requires pywavelets to be installed within your python environment.

– target, comma sperated string, require field, indicates which target sigals should be
trained as part of this ROM using this TSA algorithm.

– <family>, string, required field, indicates which family of wavelets to use.
There are several possible families to choose from, and most families contain more
than one variation. For more information regarding the wavelet families, refer to the
Pywavelets documentation.
Possible values are:
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* haar family: haar

* db family: db1, db2, db3, db4, db5, db6, db7, db8, db9, db10, db11, db12, db13,
db14, db15, db16, db17, db18, db19, db20, db21, db22, db23, db24, db25, db26,
db27, db28, db29, db30, db31, db32, db33, db34, db35, db36, db37, db38

* sym family: sym2, sym3, sym4, sym5, sym6, sym7, sym8, sym9, sym10, sym11,
sym12, sym13, sym14, sym15, sym16, sym17, sym18, sym19, sym20

* coif family: coif1, coif2, coif3, coif4, coif5, coif6, coif7, coif8, coif9, coif10,
coif11, coif12, coif13, coif14, coif15, coif16, coif17

* bior family: bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1,
bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8

* rbio family: rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1,
rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8

* dmey family: dmey

* gaus family: gaus1, gaus2, gaus3, gaus4, gaus5, gaus6, gaus7, gaus8

* mexh family: mexh

* morl family: morl

* cgau family: cgau1, cgau2, cgau3, cgau4, cgau5, cgau6, cgau7, cgau8

* shan family: shan

* fbsp family: fbsp

* cmor family: cmor

• <PolynomialRegression> fits time-series data using a polynomial function of degree
one or greater.

<PolynomialRegression> has the following attributes:

– target, comma seperated string, required field, indicates which target signals should
be trained as part of this ROM using this TSA algorithm.

<PolynomialRegression> has the following subnodes:

– <degree>, integer, required field, indicates which degree of polynomial to fit to the
presented data.

• <Fourier> uses regression to fit requested Fourier bases by their amplitudes to determin-
istically match the training signal. Fourier signals are defined with the following form:

Fm(t) = Cm sin

(
2π

km
t+ φm

)
where m indexes a particular base period km, Cm is the amplitude of this Fourier base in the
training signal, and φm is the phase shift of this Fourier base in the training signal.

<Fourier> has the following parameters:
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– target, comma seperated string, required field, indicates which target signals should
be trained as part of this ROM using this TSA algorithm.

– seed, integer, optional, provides a static seed to be used for random number genera-
tion in this ROM. Unused for the Fourier TSA algorithm.

<Fourier> further has the following subnodes:

– <periods>, comma seperated floats, required field, indicates which base periods
whose Fourier reperesentations should be fit to the training signal. For example, in a
signal with hourly measurements, selecting the period ’12, 24’ would fit the daily
(24-hour) and half-daily (12-hour) periodic trends.

• <ARMA> characterizes the signal using Auto-Regressive and Moving Average coefficients
to stochastically fit the training signal. The ARMA representation has the following form:

At =
P∑
i=1

φiAt−i + εt +

Q∑
j=1

θjεt−j,

where t indicates a discrete time step, φ are the signal lag (or auto-regressive) coefficients,
P is the number of signal lag terms to consider, ε is a random noise term, θ are the noise lag
(or moving average) coefficients, and Q is the number of noise lag terms to consider. The
ARMA algorithms are developed in RAVEN using the statsmodels Python library.

<ARMA> has the following parameters:

– target, comma seperated string, required field, indicates which target signals should
be trained as part of this ROM using this TSA algorithm.

– seed, integer, optional, provides a static seed to be used for random number genera-
tion in this ROM. This applies both to the training and sampling of this ROM.

– reduce memory, boolean, optional field, activates a lower memory usage ARMA
training. This does tend to result in a slightly slower training time, at the benefit of
lower memory usage. For example, in one 1000-length history test, low memory re-
duced memory usage by 2.3 MiB (80%), but increased training time by 0.4 seconds
(20%). No change in results has been observed switching between modes. Note that
the ARMA must be retrained to change this property; it cannot be applied to serialized
ARMAs.
Default: False

<ARMA> further has the following subnodes:

– <SignalLag>, integer, required field, number of signal lag terms to include in the
autoregression term.

– <NoiseLag>, integer, required field, number of noise lag terms to include in the
moving average term.
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SyntheticHistory Example:

<Simulation>
...
<Models>

...
<ROM name="synth" subType="SyntheticHistory">

<Target>signal1, signal2, hour</Target>
<Features>scaling</Features>
<pivotParameter>hour</pivotParameter>
<fourier target="signal1, signal2">
<periods>12, 24</periods>

</fourier>
<arma target="signal1, signal2" seed='42'>
<SignalLag>2</SignalLag>
<NoiseLag>3</NoiseLag>

</arma>
</ROM>
...

</Models>
...

</Simulation>

15.3.9 ARMA

The ARMA sub-type contains a single ROM type, based on an autoregressive moving average
time series model with Fourier signal processing, sometimes referred to as a FARMA. ARMA is a
type of time dependent model that characterizes the autocorrelation between time series data. The
mathematic description of ARMA is given as

xt =

p∑
i=1

φixt−i + αt +

q∑
j=1

θjαt−j,

where x is a vector of dimension n, and φi and θj are both n by n matrices. When q = 0, the above
is autoregressive (AR); when p = 0, the above is moving average (MA). When training an ARMA,
the input needs to be a synchronized HistorySet. For unsynchronized data, use PostProcessor
methods to synchronize the data before training an ARMA.

The ARMA model implemented allows an option to use Fourier series to detrend the time
series before fitting to ARMA model to train. The Fourier trend will be stored in the trained
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ARMA model for data generation. The following equation describes the detrending process.

xt = yt −
∑
m

{am sin(2πfmt) + bm cos(2πfmt)}

= yt −
∑
m

cm sin(2πfmt+ φm)

where 1/fm is defined by the user parameter <Fourier>. Note: am and bm will be calculated
then transformed to cm and φ. The cm will be stored as ’amplitude’, and φ will be stored as
’phase’.

By default, each target in the training will be considered independent and have an unique
ARMA for each target. Correlated targets can be specified through the <correlate> node, at
which point the correlated targets will be trained together using a vector ARMA (or VARMA). Due
to limitations in the VARMA, in order to seed samples the VARMA must be trained with the node
<seed>, which acts independently from the global random seed used by other RAVEN entities.

Both the ARMA and VARMA make use of the statsmodels python package.

In order to use this Reduced Order Model, the <ROM> attribute subType needs to be ’ARMA’
(see the example below). This model can be initialized with the following child:

• <pivotParameter>, string, required field, defines the pivot variable (e.g., time) that is
non-decreasing in the input HistorySet.

• <Features>, comma separated string, required field, defines the features (e.g., scaling).
Note that only one feature is allowed for ’ARMA’ and in current implementation this is used
for evaluation only.

• <Target>, comma separated string, required field, defines the variable(s) of the time
series. Should include the pivot parameter (or Index).

• <correlate>, comma separated string, optional field, indicates the listed variables should
be considered as influencing each other, and trained together instead of independently. This
node can only be listed once, so all variables that are desired for correlation should be in-
cluded. Note: The correlated VARMA takes notably longer to train than the independent
ARMAs for the same number of targets.

• <seed>, integer, optional field, provides seed for VARMA and ARMA sampling. Must be
provided before training. If no seed is assigned, then a random number will be used.

• <reseedCopies>, boolean, optional field, if ’True’ then whenever the ARMA is
loaded from file, a random reseeding will be performed to ensure different histories. Note: If
reproducible histories are desired for an ARMA loaded from file, <reseedCopies> should
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be set to ’False’, and in the <RunInfo> block <batchSize> needs to be 1 and
<internalParallel> should be ’False’ for RAVEN runs sampling the trained ARMA
model.

If <InternalParallel> is ’True’ and the ARMA has <reseedCopies> as ’False’,
an identical ARMA history will always be provided regardless of how many samples are
taken.

If <InternalParallel> is ’False’ and <batchSize> is more than 1, it is not
possible to guarantee the order of RNG usage by the separate processes, so it is not possible
to guarantee reproducible histories are generated.
Default: True

• <P>, integer, optional field, defines the value of p.
Default: 3

• <Q>, integer, optional field, defines the value of q.
Default: 3

• <Fourier>, comma-separated integers, optional field, must be positive integers. This
defines the based period that will be used for Fourier detrending, i.e., this field defines 1/fm
in the above equation. When this filed is not specified, the ARMA considers no Fourier
detrend.

• <outTruncation>, comma-separated string, optional, defines whether and how output
time series are limited in domain. This node has one attribute, domain, whose value can
be ’positive’ or ’negative’. The value of this node contains the list of targets to
whom this domain limitation should be applied. In the event a negative value is discovered
in a target whose domain is strictly positive, the absolute value of the original negative value
will be used instead, and similarly for the negative domain.
Default: None

• <Peaks>, node, optional, designed to estimate the peaks in signals that repeat with some
frequency, often in periodic data. The <Peaks> node has the following attributes:

– target, required string attribute, defines the name of one target (besides the pivot
parameter) expected to have periodic peaks.

– threshold, required float attribute, user-defined minimum required height of peaks
(absolute value).

– period, required float attribute, user-defined expected period for target variable.

For example,

<Peaks target='Speed' threshold='0' period='86400'>

This means the ’Speed’ signal is a daily signal, and the minimal height required to define
a peak is 0. Additionally, the <Peaks> requires the sub-node:
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– <window>, comma-separated floats, required field, lists the window of time within
each period in which a peak should be discovered. The text of this node is the upper
and lower boundary of this window relative to the start of the period, separated by a
comma. User can define the lower bound to be a negative number if the window passes
through one side of one period. For example, if the period is 24 hours, the window can
be -2,2 which is equivalent to 22, 2. This node has one attribute:

* width, required float attribute which is the user defined width of peaks in that
window. The width is in the unit of the signal as well.

The number of <window> is unlimited.

• <preserveInputCDF>, boolean, optional field, enables a final transform on sampled
data coercing it to have the same distribution as the original data. If ’True’, then every
sample generated by this ARMA after training will have a distribution of values that con-
forms within numerical accuracy to the original data. This is especially useful when variance
is desired not to stretch the most extreme events (high or low signal values), but instead the
sequence of events throughout this history. For example, this transform can preserve the load
duration curve for a load signal.
Default: False

• <ZeroFilter>, comma-separated string, optional field, turns on zero filtering for the
listed targets. Zero filtering is a very specific algorithm, and should not be used without
understanding its application. When zero filtering is enabled, the ARMA will remove all the
values from the training data equal to zero for the target, then train on the remaining data
(including Fourier detrending if applicable). If the target is set as correlated to another target,
the second target will be treated as two distinct series: one containing times in which the
original target is zero, and one in the remaining times. The results from separated ARMAs
are recombined after sampling. This can be a methodology for treating histories with long
zero-value segments punctuated periodically by peaks.

• <SpecificFourier>, node, optional, provides a means to specify different Fourier de-
composition for different target variables. Values given in the subnodes of this node will
supercede the defaults set by the <Fourier> and <FourierOrder> nodes. This node
requires the following attribute:

– variables, comma-separated list, required field, lists the variables to whom the
<SpecificFourier> parameters will apply.

Additionally, the <SpecificFourier> node takes the following subnodes:

– <periods>, comma-separated integers, required field, lists the (fundamental) peri-
odic wavelength of the Fourier decomposition for these variables, as in the <Fourier>
general node.

• <Multicycle>, node, optional, indicates that each sample of the ARMA should yield
multiple sequential samples. For example, if an ARMA model is trained to produce a year’s
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worth of data, enabling <Multicycle> causes it to produce several successive years of
data. Multicycle sampling is independent of ROM training, and only changes how samples
of the ARMA are created.

Note: The output of a multicycle ARMA must be stored in a <DataSet>, as the targets
will depend on both the <pivotParameter> as well as the cycle, ’Cycle’. The cycle
is a second <Index> that all targets should depend on, with variable name ’Cycle’.

The <Multicycle> node accepts the following subnodes:

– <cycles>, integer, required field, the number of cycles the ARMA should produce
each time it yields a sample.

– <growth>, float, optional field, if provided then the histories produced by the ARMA
will be increased by the growth factor for successive cycles. This node can be added
multiple times with different settings for different targets. The text of this node is the
growth factor in percentage. Some examples are in Table 4, where Growth factor is the
value used in the RAVEN input and Scaling factor is the value by which the history
will be multiplied.

Growth factor Scaling factor Description
50 1.5 growing by 50% each cycle

-50 0.5 shrinking by 50% each cycle
150 2.5 growing by 150% each cycle

Table 4: ARMA Growth Factor Examples

The <growth> node takes the following attributes as settings:

* targets, comma-seperated list, required field, lists the targets in this ARMA
that this growth factor should apply to.

* mode, string, required field, either ’linear’ or ’exponential’, deter-
mines the manner in which the growth factor is applied.
If ’linear’, then the scaling factor is (1 + y · g/100);
if ’exponential’, then the scaling factor is (1 + g/100)y;
where y is the cycle after the first and g is the provided scaling factor.

• <Segment>, node, optional, provides an alternative way to build the ROM. When this
mode is enabled, the subspace of the ROM (e.g. “time”) will be divided into segments as
requested, then a distinct ROM will be trained on each of the segments. This is especially
helpful if during the subspace the ROM representation of the signal changes significantly.
For example, if the signal is different during summer and winter, then a signal can be divided
and a distinct ROM trained on the segments. By default, no segmentation occurs.

To futher enable clustering of the segments, the <Segment> has the following attributes:

– grouping, string, optional field enables the use of ROM subspace clustering in ad-
dition to segmenting if set to ’cluster’. If set to ’segment’, then performs
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segmentation without clustering. If clustering, then an additional node needs to be in-
cluded in the <Segment> node, as described below.
Default: segment

This node takes the following subnodes:

– <subspace>, string, required field designates the subspace to divide. This should
be the pivot parameter (often “time”) for the ROM. This node also requires an attribute
to determine how the subspace is divided, as well as other attributes, described below:

* pivotLength, float, optional field, provides the value in the subspace that each
segment should attempt to represent, independently of how the data is stored. For
example, if the subspace has hourly resolution, is measured in seconds, and the
desired segmentation is daily, the pivotLength would be 86400. Either this
option or divisions must be provided.

* divisions, integer, optional field, as an alternative to pivotLength, this at-
tribute can be used to specify how many data points to include in each subdivision,
rather than use the pivot values. The algorithm will attempt to split the data points
as equally as possible. Either this option or pivotLength must be provided.

* shift, string, optional field, governs the way in which the subspace is treated in
each segment. By default, the subspace retains its actual values for each segment;
for example, if each segment is 4 hours long, the first segment starts at time 0, the
second at 4 hours, the third at 8 hours, and so forth. Options to change this be-
havior are ’zero’ and ’first’. In the case of ’zero’, each segment restarts
the pivot with the subspace value as 0, shifting all other values similarly. In the
example above, the first segment would start at 0, the second at 0, and the third at
0, with each ending at 4 hours. Note that the pivot values are restored when the
ROM is evaluated. Using ’first’, each segment subspace restarts at the value
of the first segment. This is useful in the event subspace 0 is not a desirable value.

– <Classifier>, string, optional field associates a <PostProcessor> defined in
the <Models> block to this segmentation. If clustering is enabled (see grouping
above), then this associated Classifier will be used to cluster the segmented ROM sub-
spaces. The attributes class=’Models’ and type=’PostProcessor’ must be
set, and the text of this node is the name of the requested Classifier. Note this Classi-
fier must be a valid Classifier; not all PostProcessors are suitable. For example, see the
DataMining PostProcessor subtype Clustering.

– <clusterFeatures>, string, optional field, if clustering then delineates the funda-
mental ROM features that should be considered while clustering. The available features
are ROM-dependent, and an exception is raised if an unrecognized request is given. See
individual ROMs for options.
Default: All ROM-specific options.

– <evalMode>, string, optional field, one of ’truncated’, ’full’, or ’clustered’,
determines how the evaluations are represented, as follows:
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* ’full’, reproduce the full signal using representative cluster segments,

* ’truncated’, reproduce a history containing exactly segment from each clus-
ter placed back-to-back, with the <pivotParameter> spanning the clustered
dimension. Note this will almost surely not be the same length as the original
signal; information about indexing can be found in the ROM’s XML metadata.

* ’clustered’, reproduce a N-dimensional object with the variable ROM cluster
as one of the indexes for the ROM’s sampled variables. Note that in order to use
the option, the receiving <DataObject> should be of type <DataSet> with
one of the indices being ROM cluster.

– <evaluationClusterChoice>, string, optional field, one of ’first’ or ’random’,
determines, if grouping= cluster, which strategy needs to be followed for the eval-
uation stage. If “first”, the first ROM (representative segmented ROM),in each cluster,
is considered to be representative of the full space in the cluster (i.e. the evaluation is
always performed interrogating the first ROM in each cluster); If “random”, a random
ROM, in each cluster, is choosen when an evaluation is requested. Note: if “first” is
used, there is substantial memory savings when compared to using “random”.
Default: first

Note that when loading the ARMA model from a serialized file as a <pickledROM>, several
nodes can be used to modify the evaluation behavior:

• <reseed>, integer, optional,

• <Multicycle>, node, optional, as <Multicycle> above, allows resetting a growth
factor and number of cycles to sample.

• <clusterEvalMode>, string, optional, one of ’truncated’, ’full’, or ’clustered’,
changes the structure of the samples for Clustered Segmented ROMs. These are identical to
the options for <evalMode> node under <Segmented> as described above.

the <seed> as well as the <Multicycle> nodes can be added to change the behavior of the
ARMA ROM.

When using ROM segmentation/clustering, the ARMA provides the following classes of fea-
tures that can be used for clustering:

• ’global’, the segment-long mean values of the signal;

• ’fourier’, the fundamental Fourier frequency amplitudes discovered during training;

• ’arma’, the standard deviation, p, and q coefficients obtained during training;

333



• ’peak’, the peak probability, mean, standard deviation, and most probable index discov-
ered during training.

General ARMA Example:

<Simulation>
...
<Models>

...
<ROM name='aUserDefinedName' subType='ARMA'>

<pivotParameter>Time</pivotParameter>
<Features>scaling</Features>
<Target>Speed1,Speed2</Target>
<P>5</P>
<Q>4</Q>
<Segment>
<subspace pivotLength="1296000"

shift="first">Time</subspace>
</Segment>
<preserveInputCDF>True</preserveInputCDF>
<Fourier>604800,86400</Fourier>
<FourierOrder>2, 4</FourierOrder>
<Peaks target='Speed1' threshold='0.1' period='86400'>
<window width='14400' >-7200,10800</window>
<window width='18000' >64800,75600</window>

</Peaks>
</ROM>
...

</Models>
...

</Simulation>

15.3.10 PolyExponential

The PolyExponential sub-type contains a single ROM type, aimed to construct a time-dependent
(or any other monotonic variable) surrogate model based on polynomial sum of exponential term.
This surrogate have the form:

SM(X, z) =
N∑
i=1

Pi(X)× exp(−Qi(X)× z) (28)

where:
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• z is the independent monotonic variable (e.g. time)

• X is the vector of the other independent (parametric) variables (Features)

• Pi(X) is a polynomial of rank M function of the parametric space X

• Qi(X) is a polynomial of rank M function of the parametric space X

• N is the number of requested exponential terms.

It is crucial to notice that this model is quite suitable for FOMs whose drivers are characterized
by an exponential-like behavior. In addition, it is important to notice that the exponential terms’
coefficients are computed running a genetic-algorithm optimization problem, which is quite slow
in case of increasing number of “numberExpTerms”. In order to use this Reduced Order Model,
the <ROM> attribute subType needs to be set equal to ’PolyExponential’ (see the example
below). This model can be initialized with the following child:

• <pivotParameter>, string, optional field, defines the pivot variable (e.g., time) that
represents the independent monotonic variable
Default: time

• <Features>, comma separated string, required field, defines the features (i.e. input pa-
rameters) of this model

• <Target>, comma separated string, required field, defines output FOMs that are going to
be predicted

• <numberExpTerms>, integer, optional field, the number of exponential terms to be used
(N above)
Default: 3

• <coeffRegressor>, string, optional field, defines which regressor to use for interpolat-
ing the exponential coefficient. Available are “spline”,“poly” and “nearest”.
Default: spline

• <polyOrder>, integer, optional field, the polynomial order to be used for interpolating
the exponential coefficients. Only valid in case of <coeffRegressor> set to “poly”.
Default: 2

• <tol>, float, optional field, relative tolerance of the optimization problem (differential
evolution optimizer)
Default: 1e-3

• <maxNumberIter>, integer, optional field, maximum number of iterations (generations)
for the optimization problem (differential evolution optimizer)
Default: 5000
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Example:

<Simulation>
...
<Models>

...
<ROM name='PolyExp' subType='PolyExponential'>

<Target>time,decay_heat, xe135_dens</Target>
<Features>enrichment,bu</Features>
<pivotParameter>time</pivotParameter>
<numberExpTerms>5</numberExpTerms>
<max_iter>1000000</max_iter>
<tol>0.000001</tol>

</ROM>
...

</Models>
...

</Simulation>

Once the ROM is trained (Step <RomTrainer>), its coefficients can be exported into an XML
file via an <OutStream> of type Print. The following variable/parameters can be exported
(i.e. <what> node in <OutStream> of type Print):

• <expTerms>, see XML input specifications above, inquired pre-pending the keyword “out-
put—” (e.g. output— expTerms)

• <coeffRegressor>, see XML input specifications above

• <polyOrder>, see XML input specifications above

• <features>, see XML input specifications above

• <timeScale>, XML node containing the array of the training time steps values

• <coefficients>, XML node containing the exponential terms’ coefficients for each re-
alization

See the following example:

<Simulation>
...
<OutStreams>

...
<Print name = 'dumpAllCoefficients'>
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<type>xml</type>
<source>PolyExp</source>
<!--
here the <what> node is omitted. All the available

params/coefficients
are going to be printed out

-->
</Print>
<Print name = 'dumpSomeCoefficients'>

<type>xml</type>
<source>PolyExp</source>
<what>coefficients,timeScale</what>

</Print>
...

</OutStreams>
...

</Simulation>

15.3.11 DMD

The DMD sub-type contains a single ROM type, aimed to construct a time-dependent (or any other
monotonic variable) surrogate model based on Dynamic Mode Decomposition (ref. [5] and [6]).
This surrogate is aimed to perform a “dimensionality reduction regression”, where, given time
series (or any monotonic-dependent variable) of data, a set of modes each of which is associated
with a fixed oscillation frequency and decay/growth rate is computed in order to represent the
data-set. In order to use this Reduced Order Model, the <ROM> attribute subType needs to be set
equal to ’DMD’ (see the example below). This model can be initialized with the following child:

• <dmdType>, string, optional field, the type of Dynamic Mode Decomposition to apply.
Available are:

– dmd, for classical DMD

– hodmd, for high order DMD.

Default: dmd

• <pivotParameter>, string, optional field, defines the pivot variable (e.g., time) that
represents the independent monotonic variable
Default: time
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• <Features>, comma separated string, required field, defines the features (i.e. input pa-
rameters) of this model

• <Target>, comma separated string, required field, defines output FOMs that are going to
be predicted

• <rankSVD>, integer, optional field, defines the truncation rank to be used for the SVD.
Available options are:

– -1, no truncation is performed

– 0, optimal rank is internally computed

– ¿1, this rank is going to be used for the truncation

Default: -1

• <energyRankSVD>, float, optional field, energy level (0.0 < float < 1.0) used to com-
pute the rank such as computed rank is the number of the biggest singular values needed
to reach the energy identified by <energyRankSVD>. This node has always priority over
<rankSVD>
Default: None

• <rankTLSQ>, integer, optional field, int > 0 that defines the truncation rank to be used
for the total least square problem. If not inputted, no truncation is applied
Default: None

• <exactModes>, bool, optional field, True if the exact modes need to be computed (eigen-
values and eigenvectors), otherwise the projected ones (using the left-singular matrix after
SVD).
Default: True

• <optimized>, float, optional field, True if the amplitudes need to be computed minimiz-
ing the error between the modes and all the time-steps or False, if only the 1st timestep only
needs to be considered
Default: True

Example:

<Simulation>
...
<Models>

...
<ROM name='DMD' subType='DMD'>

<Target>time,totals_watts, xe135_dens</Target>
<Features>enrichment,bu</Features>
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<dmdType>dmd</dmdType>
<pivotParameter>time</pivotParameter>
<rankSVD>0</rankSVD>
<rankTLSQ>5</rankTLSQ>
<exactModes>False</exactModes>
<optimized>True</optimized>

</ROM
...

</Models>
...

</Simulation>

Once the ROM is trained (Step <RomTrainer>), its parameters/coefficients can be exported
into an XML file via an <OutStream> of type Print. The following variable/parameters can
be exported (i.e. <what> node in <OutStream> of type Print):

• <rankSVD>, see XML input specifications above

• <energyRankSVD>, see XML input specifications above

• <rankTLSQ>, see XML input specifications above

• <exactModes>, see XML input specifications above

• <optimized>, see XML input specifications above

• <features>, see XML input specifications above

• <timeScale>, XML node containing the array of the training time steps values

• <dmdTimeScale>, XML node containing the array of time scale in the DMD space (can
be used as mapping between the <timeScale> and <dmdTimeScale>)

• <eigs>, XML node containing the eigenvalues (imaginary and real part)

• <amplitudes>, XML node containing the amplitudes (imaginary and real part)

• <modes>, XML node containing the dynamic modes (imaginary and real part)

See the following example:

<Simulation>
...
<OutStreams>

...
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<Print name = 'dumpAllCoefficients'>
<type>xml</type>
<source>DMD</source>
<!--
here the <what> node is omitted. All the available

params/coefficients
are going to be printed out

-->
</Print>
<Print name = 'dumpSomeCoefficients'>

<type>xml</type>
<source>PolyExp</source>
<what>eigs,amplitudes,modes</what>

</Print>
...

</OutStreams>
...

</Simulation>

15.3.12 TensorFlow-Keras Deep Neural Networks

It is important to NOTE that Python3 is required in order to use these deep neural networks. If
python2 is installed, these ROMs will not be imported by RAVEN, and an error will be raised if
the user tries to use these capabilities.

TensorFlow is an open source software library for high performance numerical computa-
tion. Its flexible architecture allows easy deployment of computation across a variety of platforms
(CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices. Orig-
inally developed by researchers and engineers from the Google Brain team within Google’s AI
organization, it comes with strong support for machine learning and deep learning and the flexible
numerical computation core is used across many other scientific domains.

Keras is a high-level API to build and train deep learning models. It’s used for fast prototyping,
advanced research, and production, with three key advantages:

• User friendly: Keras has a simple, consistent interface optimized for common use cases. It
provides clear and actionable feedback for user errors.

• Modular and composable: Keras models are made by connecting configurable building
blocks together, with few restrictions.
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• Easy to extend: Write custom building blocks to express new ideas for research. Create new
layers, loss functions, and develop state-of-the-art models.

tf.keras is TensorFlow’s implementation of the Keras API specification. This is a high-level
API to build and train models that include first-class support for TensorFlow-specific functionality,
such as eager execution, tf.data pipelines, and Estimators. tf.keras makes TensorFlow easier to use
without sacrificing flexibility and performance. RAVEN will utilize this high-level API to build
and train deep neural networks (DNNs) as ROMs, and these ROMs can be employed by other
RAVEN entities to perform uncertainty quantification, model opimization and data analysis.

Before analyzing each classifier in detail, it is important to mention that each type has a similar
syntax. In the example below, the subnodes that can be included in the main XML node <ROM>
are reported: Example:

<Simulation>
...
<Models>

...
<ROM name='aUserDefinedName' subType='whatever'>

<Features>X,Y</Features>
<Target>Z</Target>
<loss>mean_squared_error</loss>
<metrics>accuracy</metrics>
<batch_size>4</batch_size>
<epochs>4</epochs>
<num_classes>2</num_classes>
<validation_split>0.25</validation_split>
<optimizerSetting>
<optimizer>Adam</optimizer>
...

</optimizerSetting>
<WhateverLayer1 name="layerName1">
...

</WhateverLayer1>
...
<WhateverLayerN name="layerNameN">
...

</WhateverLayerN>
<layer_layout>layerName1, ..., layerNameN</layer_layout>

</ROM>
...

</Models>
...
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</Simulation>

As shown in above example, in addition to the common subnodes <Target> and <Features>,
the <ROM> of DNNs can be initialized with the following children:

• <loss>, string or comma separated string, optional field, if the model has multiple out-
puts, you can use a different loss metric on each output by passing a list of loss met-
rics. The value that will be minimized by the model will then be the sum of all indi-
vidual value from each loss metric. Available loss functions include mean squared error,
mean absolute error, mean absolute percentage error, mean squared logarithmic error, squared hinge,
hinge, categorical hinge, logcosh, categorical crossentropy, sparse categorical crossentropy,
binary crossentropy, kullback leibler divergence, poisson, cosine proximity.
Default: mean squared error

• <metrics>, string or comma separated string, optional field, list of metrics to be eval-
uated by the model during training and testing. available metrics include binary accuracy,
categorical accuracy, sparse categorical accuracy, top k categorical accuracy, sparse top k categorical accuracy.

Default: accuracy

• <batch size>, integer, optional field, number of samples per gradient update.
Default: 20

• <epochs>, integer, optional field, number of epochs to train the model. An epoch is an
iteration over the entire training data.
Default: 20

• <num classes>, positive integer, optional field, dimensionality of the output space of
given classifier.
Default: 1

• <validation split>, float between 0 and 1, optional field, fraction of the training data
to be used as validation data.
Default: 0.25

• <plot model>, boolean, optional field, if true the DNN model constructed by RAVEN
will be plotted and stored in the working directory. The file name will be ”ROM name” +
” ” + ”model.png”. Note: This capability requires the following libraries, i.e. pydot-ng
and graphviz to be installed.
Default: False

• <optimizerSetting>, optional field, including several subnode depending on the type
of optimizers.

– <optimizer>, string, optional field, name of optimizer.
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Default: Adam Note: The users can also choose different optimizers to train the ROM. The
default algorithm is Adam. Other available optimizers include: SGD, RMSprop, Adagrad,
Adadelta, Adamx, Nadam. For the detailed information, i.e. the parameters for each opti-
mization, the user can refer to https://keras.io/optimizers/. In raven, the user
can use <optimizerSetting> to set the parameters of the above optimizer as follows:

– Adam, adam optimizer

* <beta 1>, float, optional field, 0 < beta < 1. Generally close to 1.
Default: 0.9

* <beta 2>, float, optional field, 0 < beta < 1. Generally close to 1.
Default: 0.999

* <epsilon>, float, optional field, fuzz factor.
Default: None

* <decay>, float, optional field, learning rate decay over each update.
Default: 0.0

* <lr>, float, optional field, learning rate.
Default: 0.001

– SGD, stochastic gradient descent optimizer.

* <momentum>, float, optional field, > 0. Parameter that accelerates SGD in the
relevant direction and dampens oscillations.
Default: 0.0

* <nesterov>, boolean, optional field, whether to apply Nesterov momentum
Default: False

* <decay>, float, optional field, learning rate decay over each update.
Default: 0.0

* <lr>, float, optional field, learning rate.
Default: 0.001

– RMSprop, RMSProp optimizer.

* <rho>, float, optional field, > 0.
Default: 0.9

* <decay>, float, optional field, learning rate decay over each update.
Default: 0.0

* <lr>, float, optional field, learning rate.
Default: 0.001

* <epsilon>, float, optional field, fuzz factor.
Default: None

– Adagrad, Adagrad optimizer.

* <decay>, float, optional field, learning rate decay over each update.
Default: 0.0
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* <lr>, float, optional field, learning rate.
Default: 0.01

* <epsilon>, float, optional field, fuzz factor.
Default: None

– Adadelta, Adadelta optimizer.

* <decay>, float, optional field, learning rate decay over each update.
Default: 0.0

* <lr>, float, optional field, learning rate.
Default: 1.0

* <epsilon>, float, optional field, fuzz factor.
Default: None

* <rho>, float, optional field, > 0.
Default: 0.95

– Adamax, Adamax optimizer

* <beta 1>, float, optional field, 0 < beta < 1. Generally close to 1.
Default: 0.9

* <beta 2>, float, optional field, 0 < beta < 1. Generally close to 1.
Default: 0.999

* <epsilon>, float, optional field, fuzz factor.
Default: None

* <decay>, float, optional field, learning rate decay over each update.
Default: 0.0

* <lr>, float, optional field, learning rate.
Default: 0.002

– Nadam,

* <beta 1>, float, optional field, 0 < beta < 1. Generally close to 1.
Default: 0.9

* <beta 2>, float, optional field, 0 < beta < 1. Generally close to 1.
Default: 0.999

* <epsilon>, float, optional field, fuzz factor.
Default: None

* <lr>, float, optional field, learning rate.
Default: 0.002

• <layer layout>, comma seperated string, required, the layout/order of layers in the
deep neural networks. The values in the subnode should be the name of layers defined in
layer node, such as <Dense>, <Dropout>, and <Conv1D>.

Note: The descriptions regarding the <WhateverLayer> node will be introduced in fol-
lowing subsections. Basically, different classifiers will require different layers. In addition, most
core layers will accept the <activation> subnode (see 15.3.12.1).

344



15.3.12.1 Activation Functions

Activations can either be used through an <Activation> layer, or through the <activation>
argument supported by all forward layers. Available activations include:

• relu, the rectified linear unit function, returns f(x) = max(0, x).

• tanh, the hyperbolic tan function, returns f(x) = tanh(x).

• elu, exponential linear units try to make the mean activations closer to zero which speeds up
learning. f(x) = x if x ≥ 0, otherwise (exp(x)− 1.).

• selu, scaled exponential linear unit, i.e. scale ∗ elu(x, alpha), where scale, alpha are pre-
defined constants.

• softplus, a smooth approximation to the rectifier linear unit function, return f(x) = log(1.+
exp(x)).

• softsign, return f(x) = x
1.+|x| .

• sigmoid,return f(x) = 1.
1.+exp(−x) .

• hard sigmoid, hard sigmoid activation function.

• linear, i.e. identity.

• softmax, softmax activation function, return f(x) = exp(xi)∑
i exp(xi)

15.3.12.2 Initializer Functions

Initializations define the way to set the initial random weights of TensorFlow-Keras layers. The
keyword arguments used to passing initializers to layers will depend on the layer. Usually it is sim-
ply <kernel initializer> and <bias initializer>. Available initializers include:

• Zeros, generates tensors initialized to 0.

• Ones, generates tensors initialized to 1.

• Constant, generates tensors initialized to a constant value.

• RandomNormal, generates tensors with a normal distribution.

• RandomUniform, generates tensors with a uniform distribution.

• TruncatedNormal, generates a truncated normal distribution.
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• VarianceScaling, initializer capable of adapting its scale to the shape of weights.

• Orthogonal, generates a random orthogonal matrix.

• Identity, generates the identity matrix.

• lecun uniform, LeCun uniform initializer. It draws samples from a uniform distribution
within [−limit, limit] where limit is sqrt(3/fanIn) where fanIn is the number of input
dimensions in the weight tensor.

• glorot normal, Glorot normal initializer. It draws samples from a truncated normal distribu-
tion centered on 0 with stddev = sqrt(2/(fanIn+ fanOut)) where fanIn is the number of
input dimensions in the weight tensor and fanOut is the number of output dimensions in the
weight tensors.

• glorot uniform, Glorot uniform initializer. It draws samples from a uniform distribution
within [−limit, limit] where limit is sqrt(6/(fanIn+ fanOut)).

• he normal, He normal initializer. It draws samples from a truncated normal distribution
centered on 0 with stddev = sqrt(2/fanIn).

• lecun normal, LeCun normal initializer. It draws samples from a truncated normal distribu-
tion centered on 0 with stddev = sqrt(1/fanIn).

• he uniform, He uniform variance scaling initializer. It draws samples from a uniform dis-
tribution within [−limit, limit] where limit is sqrt(6/fanIn) where fanIn is the number of
input dimensions in the weight tensor.

15.3.12.3 Regularizer Functions

Regularizers allow to apply penalities on layer parameters or layer activity during optimization.
These penalties are incorporated in the loss function that the network optimizes. The exact API
will depend on the layer, but the layers <Dense, Conv1D, Conv2D, and Conv3D> have
a unified API. Available regularizers include:

• l1, l1 regularization

• l2, l2 regularization

• l1 l2, l1 and l2 regularization

346



15.3.12.4 Constraint Functions

Functions from the constraint module allow setting constraints on network parameters during op-
timization. Available constraints include:

• MaxNorm, constrains the weights incident to each hidden unit to have a norm less than or
equal to a desired value.

• NonNeg, constrains the weights to be non-negative

• UnitNorm, constrains the weights incident to each hidden unit to have unit norm.

• MinMaxNorm, constrains the weights incident to each hidden unit to have the norm between
a lower bound and an upper bound.

15.3.12.5 KerasMLPClassifier

Multi-Layer Perceptron (MLP) (or Artificial Neural Network - ANN), a class of feedforward ANN,
can be viewed as a logistic regression classifier where input is first transformed using a non-linear
transformation. This transformation probjects the input data into a space where it becomes linearly
separable. This intermediate layer is referred to as a hidden layer. An MLP consists of at least
three layers of nodes. Except for the input nodes, each node is a neuron that uses a nonlinear
activation function. MLP utilizes a suppervised learning technique called Backpropagation for
training. Generally, a single hidden layer is sufficient to make MLPs a universal approximator.
However, many hidden layers, i.e. deep learning, can be used to model more complex nonlin-
ear relationships. The extra layers enable composition of features from lower layers, potentially
modeling complex data with fewer units than a similarly performing shallow network.

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the KerasMLPClassifier ROM:

X′ =
(X− µ)

σ
(29)

In order to use this ROM, the <ROM> attribute subType needs to be ’KerasMLPClassifier’
(see the example below). This model can be initialized with the following layers:

• <Dense>, required field, regular densely-connected neural network layer. This node
require the following attribute:
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– name, string, required field, name of this layer. The value will be used in <layer layout>
to construct the fully connected neural network.

In addition, this node also accepts the following subnodes

– <activation>, string, optional field, including ‘relu’, ‘tanh’, ‘elu’, ‘selu’, ‘soft-
plus’, ‘softsign’, ‘sigmoid’, ‘hard sigmoid’, ‘linear’, ‘softmax’. (see 15.3.12.1)
Default: linear

– <dim out>, positive integer, required except if this layer is used as the last output
layer, dimensionality of the output space of this layer

– <use bias>, boolean, optional field, whether the layer uses a bias vector.
Default: True

– <kernel initializer>, string, optional field, initializer for the kernel weights
matrix (see 15.3.12.2).
Default: glorot uniform

– <bias initializer>, string, optional field, intializer for the bias vector (see
15.3.12.2).
Default: zeros

– <kernel regularizer>, string, optional field, regularizer function applied to the
kernel weights matrix (see 15.3.12.3).
Default: None

– <bias regularizer>, string, optional field, regularizer function applied to the
bias vector (see 15.3.12.3).
Default: None

– <activity regularizer>, string, optional field, regularizer function applied to
the output of the layer (its ”activation”). (see 15.3.12.3)
Default: None

– <kernel constraint>, string, optional field, constraint function applied to the
kernel weights matrix (see 15.3.12.4).
Default: None

– <bias constraint>, string, optional field, constraint function applied to the bias
vector (see 15.3.12.4)
Default: None

• <Dropout>, optional field, applies Dropout to the input. Dropout consists in randomly
setting a fraction <rate> of input units to 0 at each update during training time, which
helps prevent overfitting. This node require the following attribute:

– name, string, required field, name of this layer. The value will be used in <layer layout>
to construct the fully connected neural network.

In addition, this node also accepts the following subnode
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– <rate>, float between 0 and 1, optional field, fraction of the input units to drop.
Default: 0

– <noise shape>, list of integers, optional field, 1D integer tensor representing the
shape of the binary dropout mask that will be multiplied with the input.
Default: None

– <seed>, integer, optional field, a integer to use as random seed.
Default: None

Example:

<Simulation>
...
<Models>

...
<ROM name='aUserDefinedName' subType='KerasMLPClassifier'>

<Features>X,Y</Features>
<Target>Z</Target>
<loss>mean_squared_error</loss>
<metrics>accuracy</metrics>
<batch_size>4</batch_size>
<epochs>4</epochs>
<optimizerSetting>
<beta_1>0.9</beta_1>
<optimizer>Adam</optimizer>
<beta_2>0.999</beta_2>
<epsilon>1e-8</epsilon>
<decay>0.0</decay>
<lr>0.001</lr>

</optimizerSetting>
<Dense name="layer1">

<activation>relu</activation>
<dim_out>15</dim_out>

</Dense>
<Dropout name="dropout1">

<rate>0.2</rate>
</Dropout>
<Dense name="layer2">

<activation>tanh</activation>
<dim_out>8</dim_out>

</Dense>
<Dropout name="dropout2">

<rate>0.2</rate>
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</Dropout>
<Dense name="outLayer">

<activation>sigmoid</activation>
</Dense>
<layer_layout>layer1, dropout1, layer2, dropout2,

outLayer</layer_layout>
</ROM>
...

</Models>
...

</Simulation>

15.3.12.6 KerasConvNetClassifier

Convolutional Neural Network (CNN) is a deep learning algorithm which can take in an input
image, assign importance to various objects in the image and be able to differentiate one from the
other. The architecture of a CNN is analogous to that of the connectivity pattern of Neurons in
the Human Brain and was inspired by the organization of the Visual Cortex. Individual neurons
respond to stimuli only in a restricted region of the visual field known as the Receptive Field. A
collection of such fields overlap to cover the entire visual area. CNN is able to successfully capture
the spatial and temporal dependencies in an image through the applicaiton of relevant filters. The
architecture performs a better fitting to the image dataset due to the reduction in the number of
parameters involved and reusability of weights. In other words, the network can be trained to
understand the sophistication of the image better.

It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the KerasConvNetClassifier ROM:

X′ =
(X− µ)

σ
(30)

In order to use this ROM, the <ROM> attribute subType needs to be ’KerasConvNetClassifier’
(see the example below). This model can be initialized with the following layers:

• <Dense>, required field, regular densely-connected neural network layer. This node
require the following attribute:

– name, string, required field, name of this layer. The value will be used in <layer layout>
to construct the fully connected neural network.
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In addition, this node also accepts the following subnodes

– <activation>, string, optional field, including ‘relu’, ‘tanh’, ‘elu’, ‘selu’, ‘soft-
plus’, ‘softsign’, ‘sigmoid’, ‘hard sigmoid’, ‘linear’, ‘softmax’. (see 15.3.12.1)
Default: linear

– <dim out>, positive integer, required except if this layer is used as the last output
layer, dimensionality of the output space of this layer

– <use bias>, boolean, optional field, whether the layer uses a bias vector.
Default: True

– <kernel initializer>, string, optional field, initializer for the kernel weights
matrix (see 15.3.12.2).
Default: glorot uniform

– <bias initializer>, string, optional field, intializer for the bias vector (see
15.3.12.2).
Default: zeros

– <kernel regularizer>, string, optional field, regularizer function applied to the
kernel weights matrix (see 15.3.12.3).
Default: None

– <bias regularizer>, string, optional field, regularizer function applied to the
bias vector (see 15.3.12.3).
Default: None

– <activity regularizer>, string, optional field, regularizer function applied to
the output of the layer (its ”activation”). (see 15.3.12.3)
Default: None

– <kernel constraint>, string, optional field, constraint function applied to the
kernel weights matrix (see 15.3.12.4).
Default: None

– <bias constraint>, string, optional field, constraint function applied to the bias
vector (see 15.3.12.4)
Default: None

• <Dropout>, optional field, applies Dropout to the input. Dropout consists in randomly
setting a fraction <rate> of input units to 0 at each update during training time, which
helps prevent overfitting. This node require the following attribute:

– name, string, required field, name of this layer. The value will be used in <layer layout>
to construct the fully connected neural network.

In addition, this node also accepts the following subnode

– <rate>, float between 0 and 1, optional field, fraction of the input units to drop.
Default: 0
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– <noise shape>, list of integers, optional field, 1D integer tensor representing the
shape of the binary dropout mask that will be multiplied with the input.
Default: None

– <seed>, integer, optional field, a integer to use as random seed.
Default: None

• <Conv1D>, optional field, This node require the following attribute:

– name, string, required field, name of this layer. The value will be used in <layer layout>
to construct the fully connected neural network.

In addition, this node also accepts the following subnodes

– <activation>, string, optional field, including ‘relu’, ‘tanh’, ‘elu’, ‘selu’, ‘soft-
plus’, ‘softsign’, ‘sigmoid’, ‘hard sigmoid’, ‘linear’, ‘softmax’. (see 15.3.12.1)
Default: linear

– <dim out>, positive integer, required except if this layer is used as the last output
layer, dimensionality of the output space of this layer

– <use bias>, boolean, optional field, whether the layer uses a bias vector.
Default: True

– <kernel size>, integer or list of integers, required field, specifying the length of
the 1D convolution window.

– <strides>, integer or list of integers, optional field, pecifying the stride length of
the convolution. Specifying any stride value not equal 1 is incompatible with specifying
any dilation rate value not equal 1.
Default: 1

– <padding>, string, optional field, one of ”valid”, ”causal” or ”same” (case-insensitive).
”valid” means ”no padding”. ”same” results in padding the input such that the output
has the same length as the original input. ”causal” results in causal (dilated) convolu-
tions, e.g. output[t] does not depend on input[t + 1:]. A zero padding is used such that
the output has the same length as the original input. Useful when modeling temporal
data where the model should not violate the temporal order.
Default: valid

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

– <dilation rate>, integer or list of integers, optional field, specifying the dilation
rate to use for dilated convolution. Currently, specifying any dilation rate value not
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equal 1 is incompatible with specifying any strides value not equal 1.
Default: 1

– <kernel initializer>, string, optional field, initializer for the kernel weights
matrix (see 15.3.12.2).
Default: glorot uniform

– <bias initializer>, string, optional field, intializer for the bias vector (see
15.3.12.2).
Default: zeros

– <kernel regularizer>, string, optional field, regularizer function applied to the
kernel weights matrix (see 15.3.12.3).
Default: None

– <bias regularizer>, string, optional field, regularizer function applied to the
bias vector (see 15.3.12.3).
Default: None

– <activity regularizer>, string, optional field, regularizer function applied to
the output of the layer (its ”activation”). (see 15.3.12.3)
Default: None

– <kernel constraint>, string, optional field, constraint function applied to the
kernel weights matrix (see 15.3.12.4).
Default: None

– <bias constraint>, string, optional field, constraint function applied to the bias
vector (see 15.3.12.4)
Default: None

• <Conv2D>, optional field, In addition, this node also accepts the following subnodes

– <activation>, string, optional field, including ‘relu’, ‘tanh’, ‘elu’, ‘selu’, ‘soft-
plus’, ‘softsign’, ‘sigmoid’, ‘hard sigmoid’, ‘linear’, ‘softmax’. (see 15.3.12.1)
Default: linear

– <dim out>, positive integer, required except if this layer is used as the last output
layer, dimensionality of the output space of this layer

– <use bias>, boolean, optional field, whether the layer uses a bias vector.
Default: True

– <kernel size>, integer or list of integers, required field, specifying the length of
the 1D convolution window.

– <strides>, integer or list of integers, optional field, pecifying the stride length of
the convolution. Specifying any stride value not equal 1 is incompatible with specifying
any dilation rate value not equal 1.
Default: 1
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– <padding>, string, optional field, one of ”valid”, ”causal” or ”same” (case-insensitive).
”valid” means ”no padding”. ”same” results in padding the input such that the output
has the same length as the original input. ”causal” results in causal (dilated) convolu-
tions, e.g. output[t] does not depend on input[t + 1:]. A zero padding is used such that
the output has the same length as the original input. Useful when modeling temporal
data where the model should not violate the temporal order.
Default: valid

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

– <dilation rate>, integer or list of integers, optional field, specifying the dilation
rate to use for dilated convolution. Currently, specifying any dilation rate value not
equal 1 is incompatible with specifying any strides value not equal 1.
Default: 1

– <kernel initializer>, string, optional field, initializer for the kernel weights
matrix (see 15.3.12.2).
Default: glorot uniform

– <bias initializer>, string, optional field, intializer for the bias vector (see
15.3.12.2).
Default: zeros

– <kernel regularizer>, string, optional field, regularizer function applied to the
kernel weights matrix (see 15.3.12.3).
Default: None

– <bias regularizer>, string, optional field, regularizer function applied to the
bias vector (see 15.3.12.3).
Default: None

– <activity regularizer>, string, optional field, regularizer function applied to
the output of the layer (its ”activation”). (see 15.3.12.3)
Default: None

– <kernel constraint>, string, optional field, constraint function applied to the
kernel weights matrix (see 15.3.12.4).
Default: None

– <bias constraint>, string, optional field, constraint function applied to the bias
vector (see 15.3.12.4)
Default: None

• <Conv3D>, optional field, In addition, this node also accepts the following subnodes
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– <activation>, string, optional field, including ‘relu’, ‘tanh’, ‘elu’, ‘selu’, ‘soft-
plus’, ‘softsign’, ‘sigmoid’, ‘hard sigmoid’, ‘linear’, ‘softmax’. (see 15.3.12.1)
Default: linear

– <dim out>, positive integer, required except if this layer is used as the last output
layer, dimensionality of the output space of this layer

– <use bias>, boolean, optional field, whether the layer uses a bias vector.
Default: True

– <kernel size>, integer or list of integers, required field, specifying the length of
the 1D convolution window.

– <strides>, integer or list of integers, optional field, pecifying the stride length of
the convolution. Specifying any stride value not equal 1 is incompatible with specifying
any dilation rate value not equal 1.
Default: 1

– <padding>, string, optional field, one of ”valid”, ”causal” or ”same” (case-insensitive).
”valid” means ”no padding”. ”same” results in padding the input such that the output
has the same length as the original input. ”causal” results in causal (dilated) convolu-
tions, e.g. output[t] does not depend on input[t + 1:]. A zero padding is used such that
the output has the same length as the original input. Useful when modeling temporal
data where the model should not violate the temporal order.
Default: valid

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

– <dilation rate>, integer or list of integers, optional field, specifying the dilation
rate to use for dilated convolution. Currently, specifying any dilation rate value not
equal 1 is incompatible with specifying any strides value not equal 1.
Default: 1

– <kernel initializer>, string, optional field, initializer for the kernel weights
matrix (see 15.3.12.2).
Default: glorot uniform

– <bias initializer>, string, optional field, intializer for the bias vector (see
15.3.12.2).
Default: zeros

– <kernel regularizer>, string, optional field, regularizer function applied to the
kernel weights matrix (see 15.3.12.3).
Default: None
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– <bias regularizer>, string, optional field, regularizer function applied to the
bias vector (see 15.3.12.3).
Default: None

– <activity regularizer>, string, optional field, regularizer function applied to
the output of the layer (its ”activation”). (see 15.3.12.3)
Default: None

– <kernel constraint>, string, optional field, constraint function applied to the
kernel weights matrix (see 15.3.12.4).
Default: None

– <bias constraint>, string, optional field, constraint function applied to the bias
vector (see 15.3.12.4)
Default: None

• <Flatten>, optional field, In addition, this node also accepts the following subnodes

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <MaxPooling1D>, optional field, In addition, this node also accepts the following subn-
odes

– <pool size>, integer, required field, size of the max pooling windows.
Default: 2

– <strides>, integer or list of integers, optional field, pecifying the stride length of
the convolution. Specifying any stride value not equal 1 is incompatible with specifying
any dilation rate value not equal 1.
Default: 1

– <padding>, string, optional field, one of ”valid”, ”causal” or ”same” (case-insensitive).
”valid” means ”no padding”. ”same” results in padding the input such that the output
has the same length as the original input. ”causal” results in causal (dilated) convolu-
tions, e.g. output[t] does not depend on input[t + 1:]. A zero padding is used such that
the output has the same length as the original input. Useful when modeling temporal
data where the model should not violate the temporal order.
Default: valid

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).
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Default: channels last

• <MaxPooling2D>, optional field, In addition, this node also accepts the following subn-
odes

– <pool size>, integer, required field, size of the max pooling windows.
Default: 2

– <strides>, integer or list of integers, optional field, pecifying the stride length of
the convolution. Specifying any stride value not equal 1 is incompatible with specifying
any dilation rate value not equal 1.
Default: 1

– <padding>, string, optional field, one of ”valid”, ”causal” or ”same” (case-insensitive).
”valid” means ”no padding”. ”same” results in padding the input such that the output
has the same length as the original input. ”causal” results in causal (dilated) convolu-
tions, e.g. output[t] does not depend on input[t + 1:]. A zero padding is used such that
the output has the same length as the original input. Useful when modeling temporal
data where the model should not violate the temporal order.
Default: valid

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <MaxPooling3D>, optional field, In addition, this node also accepts the following subn-
odes

– <pool size>, integer, required field, size of the max pooling windows.
Default: 2

– <strides>, integer or list of integers, optional field, pecifying the stride length of
the convolution. Specifying any stride value not equal 1 is incompatible with specifying
any dilation rate value not equal 1.
Default: 1

– <padding>, string, optional field, one of ”valid”, ”causal” or ”same” (case-insensitive).
”valid” means ”no padding”. ”same” results in padding the input such that the output
has the same length as the original input. ”causal” results in causal (dilated) convolu-
tions, e.g. output[t] does not depend on input[t + 1:]. A zero padding is used such that
the output has the same length as the original input. Useful when modeling temporal
data where the model should not violate the temporal order.
Default: valid
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– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <AveragePooling1D>, optional field, In addition, this node also accepts the following
subnodes

– <pool size>, integer, required field, size of the max pooling windows.
Default: 2

– <strides>, integer or list of integers, optional field, pecifying the stride length of
the convolution. Specifying any stride value not equal 1 is incompatible with specifying
any dilation rate value not equal 1.
Default: 1

– <padding>, string, optional field, one of ”valid”, ”causal” or ”same” (case-insensitive).
”valid” means ”no padding”. ”same” results in padding the input such that the output
has the same length as the original input. ”causal” results in causal (dilated) convolu-
tions, e.g. output[t] does not depend on input[t + 1:]. A zero padding is used such that
the output has the same length as the original input. Useful when modeling temporal
data where the model should not violate the temporal order.
Default: valid

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <AveragePooling2D>, optional field, In addition, this node also accepts the following
subnodes

– <pool size>, integer, required field, size of the max pooling windows.
Default: 2

– <strides>, integer or list of integers, optional field, pecifying the stride length of
the convolution. Specifying any stride value not equal 1 is incompatible with specifying
any dilation rate value not equal 1.
Default: 1

– <padding>, string, optional field, one of ”valid”, ”causal” or ”same” (case-insensitive).
”valid” means ”no padding”. ”same” results in padding the input such that the output
has the same length as the original input. ”causal” results in causal (dilated) convolu-
tions, e.g. output[t] does not depend on input[t + 1:]. A zero padding is used such that
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the output has the same length as the original input. Useful when modeling temporal
data where the model should not violate the temporal order.
Default: valid

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <AveragePooling3D>, optional field, In addition, this node also accepts the following
subnodes

– <pool size>, integer, required field, size of the max pooling windows.
Default: 2

– <strides>, integer or list of integers, optional field, pecifying the stride length of
the convolution. Specifying any stride value not equal 1 is incompatible with specifying
any dilation rate value not equal 1.
Default: 1

– <padding>, string, optional field, one of ”valid”, ”causal” or ”same” (case-insensitive).
”valid” means ”no padding”. ”same” results in padding the input such that the output
has the same length as the original input. ”causal” results in causal (dilated) convolu-
tions, e.g. output[t] does not depend on input[t + 1:]. A zero padding is used such that
the output has the same length as the original input. Useful when modeling temporal
data where the model should not violate the temporal order.
Default: valid

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <GlobalMaxPooling1D>, optional field, In addition, this node also accepts the follow-
ing subnodes

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last
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• <GlobalMaxPooling2D>, optional field, In addition, this node also accepts the follow-
ing subnodes

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <GlobalMaxPooling3D>, optional field, In addition, this node also accepts the follow-
ing subnodes

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <GlobalAveragePooling1D>, optional field, In addition, this node also accepts the
following subnodes

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <GlobalAveragePooling2D>, optional field, In addition, this node also accepts the
following subnodes

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

• <GlobalAveragePooling3D>, optional field, In addition, this node also accepts the
following subnodes

– <data format>, string, optional field, A string, one of ”channels last” (default) or
”channels first”. The ordering of the dimensions in the inputs. ”channels last” corre-
sponds to inputs with shape (batch, steps, channels) (default format for temporal data in
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Keras) while ”channels first” corresponds to inputs with shape (batch, channels, steps).

Default: channels last

Example:

<Simulation>
...
<Models>

...
<ROM name='aUserDefinedName'

subType='KerasConvNetClassifier'>
<Features>x1,x2</Features>
<Target>labels</Target>
<loss>mean_squared_error</loss>
<metrics>accuracy</metrics>
<batch_size>1</batch_size>
<epochs>2</epochs>
<plot_model>True</plot_model>
<validation_split>0.25</validation_split>
<num_classes>1</num_classes>
<optimizerSetting>
<beta_1>0.9</beta_1>
<optimizer>Adam</optimizer>
<beta_2>0.999</beta_2>
<epsilon>1e-8</epsilon>
<decay>0.0</decay>
<lr>0.001</lr>

</optimizerSetting>
<Conv1D name="firstConv1D">

<activation>relu</activation>
<strides>1</strides>
<kernel_size>2</kernel_size>
<padding>valid</padding>
<dim_out>32</dim_out>

</Conv1D>
<MaxPooling1D name="pooling1">

<strides>2</strides>
<pool_size>2</pool_size>

</MaxPooling1D>
<Conv1D name="SecondConv1D">

<activation>relu</activation>
<strides>1</strides>

361



<kernel_size>2</kernel_size>
<padding>valid</padding>
<dim_out>32</dim_out>

</Conv1D>
<MaxPooling1D name="pooling2">

<strides>2</strides>
<pool_size>2</pool_size>

</MaxPooling1D>
<Flatten name="flatten">
</Flatten>
<Dense name="dense1">

<activation>relu</activation>
<dim_out>10</dim_out>

</Dense>
<Dropout name="dropout1">

<rate>0.25</rate>
</Dropout>
<Dropout name="dropout2">

<rate>0.25</rate>
</Dropout>
<Dense name="dense2">

<activation>softmax</activation>
</Dense>
<layer_layout>firstConv1D, pooling1, dropout1,

SecondConv1D, pooling2, dropout2, flatten, dense1,
dense2</layer_layout>

</ROM>
...

</Models>
...

</Simulation>

15.3.12.7 KerasLSTMClassifier

Long Short Term Memory networks (LSTM) are a special kind of recurrent neural network, ca-
pable of learning long-term dependencies. They work tremendously well on a large variety of
problems, and are now widely used. LSTMs are explicity designed to avoid the long-term de-
pendency problem. Remembering information for long periods of time is practically their default
behavior, not something that they struggle to learn.
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It is important to NOTE that RAVEN uses a Z-score normalization of the training data before
constructing the KerasLSTMClassifier ROM:

X′ =
(X− µ)

σ
(31)

In order to use this ROM, the <ROM> attribute subType needs to be ’KerasLSTMClassifier’
(see the example below). This model can be initialized with the following layers:

• <Dense>, required field, regular densely-connected neural network layer. This node
require the following attribute:

– name, string, required field, name of this layer. The value will be used in <layer layout>
to construct the fully connected neural network.

In addition, this node also accepts the following subnodes

– <activation>, string, optional field, including ‘relu’, ‘tanh’, ‘elu’, ‘selu’, ‘soft-
plus’, ‘softsign’, ‘sigmoid’, ‘hard sigmoid’, ‘linear’, ‘softmax’. (see 15.3.12.1)
Default: linear

– <dim out>, positive integer, required except if this layer is used as the last output
layer, dimensionality of the output space of this layer

– <use bias>, boolean, optional field, whether the layer uses a bias vector.
Default: True

– <kernel initializer>, string, optional field, initializer for the kernel weights
matrix (see 15.3.12.2).
Default: glorot uniform

– <bias initializer>, string, optional field, intializer for the bias vector (see
15.3.12.2).
Default: zeros

– <kernel regularizer>, string, optional field, regularizer function applied to the
kernel weights matrix (see 15.3.12.3).
Default: None

– <bias regularizer>, string, optional field, regularizer function applied to the
bias vector (see 15.3.12.3).
Default: None

– <activity regularizer>, string, optional field, regularizer function applied to
the output of the layer (its ”activation”). (see 15.3.12.3)
Default: None
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– <kernel constraint>, string, optional field, constraint function applied to the
kernel weights matrix (see 15.3.12.4).
Default: None

– <bias constraint>, string, optional field, constraint function applied to the bias
vector (see 15.3.12.4)
Default: None

• <Dropout>, optional field, applies Dropout to the input. Dropout consists in randomly
setting a fraction <rate> of input units to 0 at each update during training time, which
helps prevent overfitting. This node require the following attribute:

– name, string, required field, name of this layer. The value will be used in <layer layout>
to construct the fully connected neural network.

In addition, this node also accepts the following subnode

– <rate>, float between 0 and 1, optional field, fraction of the input units to drop.
Default: 0

– <noise shape>, list of integers, optional field, 1D integer tensor representing the
shape of the binary dropout mask that will be multiplied with the input.
Default: None

– <seed>, integer, optional field, a integer to use as random seed.
Default: None

• <LSTM>, required field, long short-term memory layer. This node require the following
attribute:

– name, string, required field, name of this layer. The value will be used in <layer layout>
to construct the fully connected neural network.

In addition, this node also accepts the following subnodes

– <activation>, string, optional field, including ‘relu’, ‘tanh’, ‘elu’, ‘selu’, ‘soft-
plus’, ‘softsign’, ‘sigmoid’, ‘hard sigmoid’, ‘linear’, ‘softmax’. (see 15.3.12.1)
Default: linear

– <dim out>, positive integer, required except if this layer is used as the last output
layer, dimensionality of the output space of this layer

– <recurrent activation>, string, optional field, activation function to use for
the recurrent step, including ‘relu’, ‘tanh’, ‘elu’, ‘selu’, ‘softplus’, ‘softsign’, ‘sigmoid’,
‘hard sigmoid’, ‘linear’, ‘softmax’.
Default: hard sigmoid

– <dropout>, float between 0 and 1, optional field, fraction of the units to drop for the
linear transformation of the inputs
Default: 0
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– <recurrent dropout>, float between 0 and 1, optional field, fraction of the units
to drop for the linear transformation of the recurrent state.
Default: 0

– <return sequence>, boolean, optional field, whether to return the last output in
the output sequence, or full sequence.
Default: False

– <use bias>, boolean, optional field, whether the layer uses a bias vector.
Default: True

– <kernel initializer>, string, optional field, initializer for the kernel weights
matrix (see 15.3.12.2).
Default: glorot uniform

– <recurrent initializer>, string, optional field, used for the linear transfor-
mation of the recurrent state (see 15.3.12.2).
Default: orthogonal

– <bias initializer>, string, optional field, intializer for the bias vector (see
15.3.12.2).
Default: zeros

– <unit forget bias>, boolean, optional field, add 1 to the bias of the forget gate
at initialization if True.
Default: True

– <kernel regularizer>, string, optional field, regularizer function applied to the
kernel weights matrix (see 15.3.12.3).
Default: None

– <recurrent regularizer>, string, optional field, regularizer function applied
to the recurrent kernel weights matrix (see 15.3.12.3).
Default: None

– <bias regularizer>, string, optional field, regularizer function applied to the
bias vector (see 15.3.12.3).
Default: None

– <activity regularizer>, string, optional field, regularizer function applied to
the output of the layer (its ”activation”). (see 15.3.12.3)
Default: None

– <kernel constraint>, string, optional field, constraint function applied to the
kernel weights matrix (see 15.3.12.4).
Default: None

– <recurrent constraint>, string, optional field, constraint function applied to
the recurrent kernel weights matrix (see ??).
Default: None
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– <bias constraint>, string, optional field, constraint function applied to the bias
vector (see 15.3.12.4)
Default: None

– <implementation>, integer, optional field, implementation mode, either 1 or 2.
Mode 1 will structure its operations as a larger number of smaller dot products and
additions, whereas mode 2 will batch them into fewer, larger operations. These modes
will have different performance profiles on different hardware and for different appli-
cations.
Default: 1

– <return state>, boolean, optional field, whether to return the last output in the
output sequence, or the full sequence.
Default: False

– <go backwards>, boolean, optional field, if True, process the input sequence back-
wards and return the reversed sequence.
Default: False

– <stateful>, boolean, optional field, if True, the last state for each sample at index
i in a batch will be used as initial state for the sample of index i in the following batch.
Default: False

– <unroll>, boolean, optional field, if True, the network will be unrolled, else a sym-
bolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more
memory-intensive. Unrolling is only suitable for short sequences.
Default: False

Example:

<Simulation>
...
<Models>

...
<ROM name='aUserDefinedName' subType='KerasLSTMClassifier'>

<Features>x</Features>
<Target>y</Target>
<loss>categorical_crossentropy</loss>
<metrics>accuracy</metrics>
<batch_size>1</batch_size>
<epochs>10</epochs>
<validation_split>0.25</validation_split>
<num_classes>26</num_classes>
<optimizerSetting>
<beta_1>0.9</beta_1>
<optimizer>Adam</optimizer>
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<beta_2>0.999</beta_2>
<epsilon>1e-8</epsilon>
<decay>0.0</decay>
<lr>0.001</lr>

</optimizerSetting>
<LSTM name="lstm1">

<activation>tanh</activation>
<dim_out>32</dim_out>

</LSTM>
<LSTM name="lstm2">

<activation>tanh</activation>
<dim_out>16</dim_out>

</LSTM>
<Dropout name="dropout">

<rate>0.25</rate>
</Dropout>
<Dense name="dense">

<activation>softmax</activation>
</Dense>
<layer_layout>lstm1,lstm2,dropout,dense</layer_layout>

</ROM>
...

</Models>
...

</Simulation>

15.4 External Model

As the name suggests, an external model is an entity that is embedded in the RAVEN code at
run time. This object allows the user to create a python module that is going to be treated as a
predefined internal model object. In other words, the External Model is going to be treated by
RAVEN as a normal external Code (e.g. it is going to be called in order to compute an arbitrary
quantity based on arbitrary input).

The specifications of an External Model must be defined within the XML block <ExternalModel>.
This XML node needs to contain the attributes:

• name, required string attribute, user-defined name of this External Model. Note: As with
the other objects, this is the name that can be used to refer to this specific entity from other
input blocks in the XML.
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• subType, required string attribute, external model type. It must be kept empty, except in
the following cases:

– pluginType, in this case the subType is the spefic plugin to use (e.g. TEAL.CashFlow)
– pickledModel, a pickled external model (serialized model). See 15.4.2 for details.

• ModuleToLoad, required string attribute, file name with its absolute or relative path.
This attribute is specified just for Generic ExternalModel (i.e. empty subType) Note: If
a relative path is specified, the code first checks relative to the working directory, then it
checks with respect to where the user runs the code. Using the relative path with respect to
where the code is run is not recommended.

In order to make the RAVEN code aware of the variables the user is going to manipulate/use in
her/his own python Module, the variables need to be specified in the <ExternalModel> input
block. The user needs to input, within this block, only the variables that RAVEN needs to be aware
of (i.e. the variables are going to directly be used by the code) and not the local variables that the
user does not want to, for example, store in a RAVEN internal object. These variables are specified
within a <variables> block:

• <variables>, string, optional parameter. Comma-separated list of variable names.
Each variable name needs to match a variable used/defined in the external python model.
Note: This node (<variables>) is deprecated and will be removed in RAVEN 3.0 in

favor of the two following nodes (<inputs>, <outputs>)

• <inputs>, string, required parameter. Comma-separated list of input variable names.
Each variable name needs to match a variable used/defined in the external python model.

• <outputs>, string, required parameter. Comma-separated list of output variable names.
Each variable name needs to match a variable used/defined in the external python model.

In addition, if the user wants to use the alias system, the following XML block can be inputted:

• <alias> string, optional field specifies alias for any variable of interest in the input or out-
put space for the ExternalModel. These aliases can be used anywhere in the RAVEN input
to refer to the ExternalModel variables. In the body of this node the user specifies the name
of the variable that the model is going to use (during its execution). The actual alias, usable
throughout the RAVEN input, is instead defined in the variable attribute of this tag.
The user can specify aliases for both the input and the output space. As sanity check, RAVEN
requires an additional required attribute type. This attribute can be either “input” or “out-
put”. Note: The user can specify as many aliases as needed.
Default: None

When the external function variables are defined, at run time, RAVEN initializes them and
tracks their values during the simulation. Each variable defined in the <ExternalModel> block
is available in the module (each method implemented) as a python “self.”
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15.4.1 Generic External Model

As mentioned before, the generic external model is a python module that is going to be treated as
a predefined internal model object.

In the External Python module (if not a plugin or pickledModel), the user can implement all
the methods that are needed for the functionality of the model, but only the following methods, if
present, are called by the framework:

• def readMoreXML, OPTIONAL METHOD, can be implemented by the user if the
XML input that belongs to this External Model needs to be extended to contain other in-
formation. The information read needs to be stored in “self” in order to be available to all
the other methods (e.g. if the user needs to add a couple of newer XML nodes with informa-
tion needed by the algorithm implemented in the “run” method).

• def initialize, OPTIONAL METHOD, can implement all the actions need to be per-
formed at the initialization stage.

• def createNewInput, OPTIONAL METHOD, creates a new input with the informa-
tion coming from the RAVEN framework. In this function the user can retrieve the informa-
tion coming from the RAVEN framework, during the employment of a calculation flow, and
use them to construct a new input that is going to be transferred to the “run” method.

• def run, REQUIRED METHOD, is the actual location where the user needs to imple-
ment the model action (e.g. resolution of a set of equations, etc.). This function is going
to receive the Input (or Inputs) generated either by the External Model “createNewInput”
method or the internal RAVEN one.

In the following sub-sections, all the methods are going to be analyzed in detail.

15.4.1.1 Method: def readMoreXML

As already mentioned, the readMoreXML method can be implemented by the user if the XML
input that belongs to this External Model needs to be extended to contain other information. The
information read needs to be stored in “self” in order to be available to all the other methods (e.g.
if the user needs to add a couple of newer XML nodes with information needed by the algorithm
implemented in the “run” method). If this method is implemented in the External Model, RAVEN
is going to call it when the node <ExternalModel> is found parsing the XML input file. The
method receives from RAVEN an attribute of type “xml.etree.ElementTree”, containing all the
sub-nodes and attribute of the XML block <ExternalModel>.

Example XML:

369



<Simulation>
...
<Models>

...
<ExternalModel name='AnExtModule' subType=''

ModuleToLoad='path_to_external_module'>
<variables>sigma,rho,outcome</variables>
<!--

here we define other XML nodes RAVEN does not read
automatically.

We need to implement, in the external module
'AnExtModule' the readMoreXML method

-->
<newNodeWeNeedToRead>

whatNeedsToBeRead
</newNodeWeNeedToRead>

</ExternalModel>
...

</Models>
...

</Simulation>

Corresponding Python function:

def _readMoreXML(self,xmlNode):
# the xmlNode is passed in by RAVEN framework
# <newNodeWeNeedToRead> is unknown (in the RAVEN framework)
# we have to read it on our own
# get the node
ourNode = xmlNode.find('newNodeWeNeedToRead')
# get the information in the node
self.ourNewVariable = ourNode.text
# end function

15.4.1.2 def initialize

The initialize method can be implemented in the External Model in order to initialize some vari-
ables needed by it. For example, it can be used to compute a quantity needed by the “run” method
before performing the actual calculation). If this method is implemented in the External Model,
RAVEN is going to call it at the initialization stage of each “Step” (see section 18. RAVEN will
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communicate, thorough a set of method attributes, all the information that are generally needed to
perform a initialization:

• runInfo, a dictionary containing information regarding how the calculation is set up (e.g.
number of processors, etc.). It contains the following attributes:

– DefaultInputFile – default input file to use

– SimulationFiles – the xml input file

– ScriptDir – the location of the pbs script interfaces

– FrameworkDir – the directory where the framework is located

– WorkingDir – the directory where the framework should be running

– TempWorkingDir – the temporary directory where a simulation step is run

– NumMPI – the number of mpi process by run

– NumThreads – number of threads by run

– numProcByRun – total number of core used by one run (number of threads by number
of mpi)

– batchSize – number of contemporaneous runs

– ParallelCommand – the command that should be used to submit jobs in parallel
(mpi)

– numNode – number of nodes

– procByNode – number of processors by node

– totalNumCoresUsed – total number of cores used by driver

– queueingSoftware – queueing software name

– stepName – the name of the step currently running

– precommand – added to the front of the command that is run

– postcommand – added after the command that is run

– delSucLogFiles – if a simulation (code run) has not failed, delete the relative log
file (if True)

– deleteOutExtension – if a simulation (code run) has not failed, delete the relative
output files with the listed extension (comma separated list, for example: ‘e,r,txt’)

– mode – running mode, curently the only mode supported is mpi (but custom modes
can be created)

– expectedTime – how long the complete input is expected to run

– logfileBuffer – logfile buffer size in bytes

• inputs, a list of all the inputs that have been specified in the “Step” using this model.
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In the following an example is reported:

def initialize(self,runInfo,inputs):
# Let's suppose we just need to initialize some variables
self.sigma = 10.0
self.rho = 28.0
# end function

15.4.1.3 Method: def createNewInput

The createNewInput method can be implemented by the user to create a new input with the infor-
mation coming from the RAVEN framework. In this function, the user can retrieve the information
coming from the RAVEN framework, during the employment of a calculation flow, and use them
to construct a new input that is going to be transferred to the “run” method. The new input created
needs to be returned to RAVEN (i.e. “return NewInput”).
This method expects that the new input is returned in a Python “dictionary”. RAVEN communi-
cates, thorough a set of method attributes, all the information that are generally needed to create a
new input:

• inputs, python list, a list of all the inputs that have been defined in the “Step” using this
model.

• samplerType, string, the type of Sampler, if a sampling strategy is employed; will be
None otherwise.

• Kwargs, dictionary, a dictionary containing several pieces of information (that can change
based on the “Step” type). If a sampling strategy is employed, this dictionary contains an-
other dictionary identified by the keyword “SampledVars”, in which the variables perturbed
by the sampler are reported.

Note: If the “Step” that is using this Model has as input(s) an object of main class type “DataOb-
jects” (see Section 12), the internal “createNewInput” method is going to convert it in a dictionary
of values.

Here we present an example:

def createNewInput(self,inputs,samplerType,**Kwargs):
# in here the actual createNewInput of the
# model is implemented
if samplerType == 'MonteCarlo':

avariable = inputs['something']*inputs['something2']
else:
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avariable = inputs['something']/inputs['something2']
return avariable*Kwargs['SampledVars']['aSampledVar']

15.4.1.4 Method: def run

As stated previously, the only method that must be present in an External Module is the run
function. In this function, the user needs to implement the algorithm that RAVEN will exe-
cute. The run method is generally called after having inquired the “createNewInput” method
(either the internal or the user-implemented one). The only attribute this method is going to re-
ceive is a Python list of inputs (the inputs coming from the createNewInput method). If
the user wants RAVEN to collect the results of this method, the outcomes of interest need to be
stored in “self.” Note: RAVEN is trying to collect the values of the variables listed only in the
<ExternalModel> XML block.

In the following an example is reported:

def run(self,Input):
# in here the actual run of the
# model is implemented
input = Input[0]
self.outcome = self.sigma*self.rho*input[``whatEver'']

15.4.2 pickledModel

It is not uncommon for a Model to be created and encapsulate in one RAVEN run, then serialized
to file (pickled), then loaded into another RAVEN run to be used as a model. When this is the
case, a <ExternalModel> with subtype ’pickledModel’ is used to hold the place of the Ex-
ternalModel that will be loaded from file. The notation for this ExternalModel is much less than
a typical ExternalModel; it only requires a name and its subtype. Note that when loading Exter-
nalModels from file, RAVEN will not perform any checks on the expected inputs or outputs of an
ExternalModel; it is expected that a user know at least the I/O of a ExternalModel before trying
to use it as a model. Initially, a pickledModel is not usable. It cannot be sampled; attempting to
do so will raise an error. An <IOStep> is used to load the ExternalModel from file, at which
point the ExternalModel will have all the same characteristics as when it was pickled in a previous
RAVEN run. Example: For this example the ExternalModel has already been created in another
RAVEN run, then serialized to a file called rom pickle.pk. In the example, the file is identified in
<Files>, the model is defined in <Models>, and the model loaded in <Steps>.

<Simulation>
...
<Files>
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<Input name="pickle.pk" type="">pickle.pk</Input>
</Files>
...
<Models>

...
<ExternalModel name="myModel" subType="pickledModel"/>
...

</Models>
...
<Steps>

...
<IOStep name="loadModel">
<Input class="Files" type="">pickle.pk</Input>
<Output class="Models" type="pickledModel">myModel</Output>

</IOStep>
...

</Steps>
...

</Simulation>

15.5 PostProcessor

A Post-Processor (PP) can be considered as an action performed on a set of data or other type of
objects. Most of the post-processors contained in RAVEN, employ a mathematical operation on
the data given as “input”. RAVEN supports several different types of PPs.

Currently, the following types are available in RAVEN:

• BasicStatistics
• ComparisonStatistics
• ImportanceRank
• SafestPoint
• LimitSurface
• LimitSurfaceIntegral
• External
• TopologicalDecomposition
• DataMining
• RiskMeasureDiscrete
• Metric
• CrossValidation
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• DataClassifier
• ValueDuration
• FastFourierTransform
• SampleSelector
• ParetoFrontier
• MCSImporter
• EconomicRatio

The specifications of these types must be defined within the XML block <PostProcessor>.
This XML node needs to contain the attributes:

• name, required string attribute, user-defined identifier of this post-processor. Note: As
with other objects, this is the name that can be used to refer to this specific entity from other
input XML blocks.

• subType, required string attribute, defines which of the post-processors needs to be used,
choosing among the previously reported types. This choice conditions the subsequent re-
quired and/or optional <PostProcessor> sub nodes.

As already mentioned, all the types and meaning of the remaining sub-nodes depend on the
post-processor type specified in the attribute subType. In the following sections the specifications
of each type are reported.

15.5.1 BasicStatistics

The BasicStatistics post-processor is the container of the algorithms to compute many of the most
important statistical quantities. It is important to notice that this post-processor can accept as input
both PointSet and HistorySet data objects, depending on the type of statistics the user wants to
compute:

• PointSet: Static Statistics;

• HistorySet: Dynamic Statistics. Depending on a “pivot parameter” (e.g. time) the post-
processor is going to compute the statistics for each value of it (e.g. for each time step).
In case an HistorySet is provided as Input, the Histories needs to be synchronized (use
Interfaced post-processor of type HistorySetSync).

In order to use the BasicStatistics post-processor PP, the user needs to set the subType of a
<PostProcessor> node:

<PostProcessor name=’ppName’ subType=’BasicStatistics’/>.

Several sub-nodes are available:
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• <"metric">, comma separated string or node list, required field, specifications for the
metric to be calculated. The name of each node is the requested metric. There are two
forms for specifying the requested parameters of the metric. For scalar values such as
<expectedValue> and <variance>, the text of the node is a comma-separated list
of the parameters for which the metric should be calculated. For matrix values such as
<sensitivty> and <covariance>, the matrix node requires two sub-nodes, <targets>
and <features>, each of which is a comma-separated list of the targets for which the met-
ric should be calculated, and the features for which the metric should be calculated for that
target. See the example below.

Note: When defining the metrics to use, it is possible to have multiple nodes with the same
name. For example, if a problem has inputs W , X , Y , and Z, and the responses are A, B,
and C, it is possible that the desired metrics are the <sensitivity> of A and B to X
and Y , as well as the <sensitivity> of C to W and Z, but not the sensitivity of A to
W . In this event, two copies of the <sensitivity> node are added to the input. The first
has targets A,B and features X, Y , while the second node has target C and features W,Z.
This could reduce some computation effort in problems with many responses or inputs. An
example of this is shown below.
Currently the scalar quantities available for request are:

– expectedValue: expected value or mean

– minimum: The minimum value of the samples.

– maximum: The maximum value of the samples.

– median: The weighted median of the samples ( 50% weighted percentile). If proba-
blitity weights are not assigned, uniform distribution will be assigned. The median xk
satisfying:

k−1∑
i=1

wi ≤ 1/2and
n∑

i=k+1

wi ≤ 1/2 (32)

– variance: variance

– sigma: standard deviation

– percentile: the percentile. If this quantity is inputted as percentile the 5% and 95% per-
centile(s) are going to be computed. Otherwise the user can specify this quantity with
a parameter percent=’X’, where the X represents the requested percentile (a floating
point value between 0.0 and 100.0)

– variationCoefficient: coefficient of variation, i.e. sigma/expectedValue. Note: If the
expectedValue is zero, the variationCoefficient will be INF.

– skewness: skewness

– kurtosis: excess kurtosis (also known as Fisher’s kurtosis)

– samples: the number of samples in the data set used to determine the statistics.
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The matrix quantities available for request are:

– sensitivity: matrix of sensitivity coefficients, computed via linear regression method.
( Note: The condition number is computed every time this quantity is requsted. If
it results to be greater then 30, a multicollinearity problem exists and the sensitivity
coefficients might be incorrect and a Warning is spooned by the code)

– covariance: covariance matrix

– pearson: matrix of correlation coefficients

– NormalizedSensitivity: matrix of normalized sensitivity coefficients. Note: It is the
matrix of normalized VarianceDependentSensitivity

– VarianceDependentSensitivity: matrix of sensitivity coefficients dependent on the
variance of the variables

This XML node needs to contain the attribute:

– prefix, required string attribute, user-defined prefix for the given metric. For scalar
quantifies, RAVEN will define a variable with name defined as: “prefix” + “ ” + “pa-
rameter name”. For example, if we define “mean” as the prefix for expectedValue, and
parameter “x”, then variable “mean x” will be defined by RAVEN. For matrix quan-
tities, RAVEN will define a variable with name defined as: “prefix” + “ ” + “target
parameter name” + “ ” + “feature parameter name”. For example, if we define “sen”
as the prefix for sensitivity, target “y” and feature “x”, then variable “sen y x” will
be defined by RAVEN. Note: These variable will be used by RAVEN for the internal
calculations. It is also accessible by the user through DataObjects and OutStreams.

Note: If the weights are present in the system then weighted quantities are calculated auto-
matically. In addition, if a matrix quantity is requested (e.g. Covariance matrix, etc.), only
the weights in the output space are going to be used for both input and output space (the
computation of the joint probability between input and output spaces is not implemented
yet).
Note: Certain ROMs provide their own statistical information (e.g., those using the sparse

grid collocation sampler such as: ’GaussPolynomialRom’ and ’HDMRRom’) which
can be obtained by printing the ROM to file (xml). For these ROMs, computing the basic
statistics on data generated from one of these sampler/ROM combinations may not provide
the information that the user expects.
In addition, RAVEN will automatically calculate the standard errors on the following scalar
quantities:

– expectedValue
– median
– variance
– sigma
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– skewness
– kurtosis

RAVEN will define a variable with name defined as: “prefix for given metric” + “ ste ” +
“parameter name” to store standard error of given metric with respect to given parameter.
This information will be stored in the DataObjects, i.e. PointSet and HistorySet, and by
default will be printed out in the “CSV” output files by the OutStreams. Option node
<what> can be used in the OutStreams to select the information that the users want to
print. In the case when the users want to store all the calculations results in general DataSets,
RAVEN will employ a variable with name defined as: “metric” + “ ste” to store standard
error with respect to all target parameters. An additional index “target” will added in the
DataSets with respect to these variables. All these quantities will be automatically computed
and stored in the given DataSet, and the users do not need to specify these quantities in their
RAVEN input files.

• <pivotParameter>, string, optional field, name of the parameter that needs to be used
for the computation of the Dynamic BasicStatistics (e.g. time). This node needs to be
inputted just in case an HistorySet is used as Input. It represents the reference monotonic
variable based on which the statistics is going to be computed (e.g. time-dependent statistical
moments).
Default: None

• <biased>, string (boolean), optional field, if True biased quantities are going to be calcu-
lated, if False unbiased.
Default: False

• <dataset>, boolean, optional field, if True ’DataSet’ will be used to store the calcula-
tion results, if False ’PointSet’ or ’HistorySet’ will be used to store the calculation
results. Note: The optional ’DataSet’ is added only to this PostProcessor, one can still
use the ’OutStreams’ to print the variables available in the DataSet. The ’"metric"’
names are used as the variable names, i.e. variable names listed in <Input> or <Output>
in the defined ’DataSet’. In addition, the extra node <Index> is required, and the value
for var can be found in the following:

– scalar metrics, such as <expectedValue> and <variance>, are requested, the
index variable ’targets’ will be required.

– vector metrics, such as <covariance> and <sensitivity>, are requested, the
index variables ’targets’ and ’features’ will be required.

– If <percentile> is requested, an additional index variable ’percent’ should be
added.

– when dynamic BasicStatistics (e.g. time) is requested, the index variable ’time’ will
be required.
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Default: False

• <multipleFeatures>, (boolean, optional field), if False, this node can be used when
the users want to compute sensitivities based on one target variable with respect to one fea-
ture variable, i.e. the sensitivity calculations are directly computed using the Linear Regres-
sion or Best Linear Predictor method with single feature. This method can be useful when
the input features depend on each other. The default value is True, which means the sensitiv-
ity calculations are performed using Linear Regression or Best Linear Predictor method
with multiple features. If the input features are not fully correlated, the default value for
<multipleFeatures> is always recommanded. Note: this node only affects the calcu-
lations of metrics such as <sensitivity>, <VarianceDependentSensitivity>
and <NormalizedSensitivity>.
Default: True

Example (Static Statistics): This example demonstrates how to request the expected value of
’x01’ and ’x02’, along with the sensitivity of both ’x01’ and ’x02’ to ’a’ and ’b’.

<Simulation>
...
<Models>

...
<PostProcessor name='aUserDefinedName'

subType='BasicStatistics' verbosity='debug'>
<expectedValue prefix='mean'>x01,x02</expectedValue>
<sensitivity prefix='sen'>
<targets>x01,x02</targets>
<features>a,b</features>

</sensitivity>
</PostProcessor>
...

</Models>
...

</Simulation>

In this case, the RAVEN variables “mean x01, mean x02, sen x01 a, sen x02 a, sen x01 b,
sen x02 b” will be created and accessible for the RAVEN entities DataObjects and OutStreams.

Example (Static, multiple matrix nodes): This example shows how multiple nodes can spec-
ify particular metrics multiple times to include different target/feature combinations. This postpro-
cessor calculates the expected value of A, B, and C, as well as the sensitivity of both A and B to
X and Y as well as the sensitivity of C to W and Z.

<Simulation>
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...
<Models>

...
<PostProcessor name='aUserDefinedName'

subType='BasicStatistics' verbosity='debug'>
<expectedValue prefix='mean'>A,B,C</expectedValue>
<sensitivity prefix='sen1'>
<targets>A,B</targets>
<features>x,y</features>

</sensitivity>
<sensitivity prefix='sen2'>
<targets>C</targets>
<features>w,z</features>

</sensitivity>
</PostProcessor>
...

</Models>
...

</Simulation>

Example (Dynamic Statistics):

<Simulation>
...
<Models>

...
<PostProcessor name='aUserDefinedNameForDynamicPP'

subType='BasicStatistics' verbosity='debug'>
<expectedValue prefix='mean'>x01,x02</expectedValue>
<sensitivity prefix='sen'>
<targets>x01,x02</targets>
<features>a,b</features>

</sensitivity>
<pivotParameter>time</pivotParameter>

</PostProcessor>
...

</Models>
...
<HistorySet name='basicStatHistorySet'>

<Output>
mean_x01,mean_x02,
sen_x01_a, sen_x01_b,
sen_x02_a, sen_x02_b
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</Output>
<options>

<pivotParameter>time</pivotParameter>
</options>

</HistorySet>
</Simulation>

Example (Dumping the results into DataSet):

<Simulation>
...
<Models>

...
<PostProcessor name='aUserDefinedNameForDynamicPP'

subType='BasicStatistics' verbosity='debug'>
<dataset>True</dataset>
<expectedValue prefix='mean'>x01,x02</expectedValue>
<sensitivity prefix='sen'>
<targets>x01,x02</targets>
<features>a,b</features>

</sensitivity>
<pivotParameter>time</pivotParameter>

</PostProcessor>
...

</Models>
...
<DataObjects>

<DataSet name='basicStatDataSet'>
<Output>expectedValue,sensitivity</Output>
<Index var='time'>expectedValue,sensitivity</Index>
<Index var='targets'>expectedValue,sensitivity</Index>
<Index var='features'>sensitivity</Index>

</DataSet>
</DataObjects>

</Simulation>

15.5.2 ComparisonStatistics

The ComparisonStatistics post-processor computes statistics for comparing two different dataOb-
jects. This is an experimental post-processor, and it will definitely change as it is further developed.
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There are four nodes that are used in the post-processor.

• <kind>: specifies information to use for comparing the data that is provided. This takes
either uniformBins which makes the bin width uniform or equalProbability which makes the
number of counts in each bin equal. It can take the following attributes:

– numBins which takes a number that directly specifies the number of bins

– binMethod which takes a string that specifies the method used to calculate the num-
ber of bins. This can be either square-root or sturges.

• <compare>: specifies the data to use for comparison. This can either be a normal distribu-
tion or a dataObjects:

– <data>: This will specify the data that is used. The different parts are separated by
|’s.

– <reference>: This specifies a reference distribution to be used. It takes distribution
to use that is defined in the distributions block. A name parameter is used to tell which
distribution is used.

• <fz>: If the text is true, then extra comparison statistics for using the fz function are gener-
ated. These take extra time, so are not on by default.

• <interpolation>: This switches the interpolation used for the cdf and the pdf functions
between the default of quadratic or linear.

The ComparisonStatistics post-processor generates a variety of data. First for each data pro-
vided, it calculates bin boundaries, and counts the numbers of data points in each bin. From the
numbers in each bin, it creates a cdf function numerically, and from the cdf takes the derivative to
generate a pdf. It also calculates statistics of the data such as mean and standard deviation. The
post-processor can generate a CSV file only.

The post-processor uses the generated pdf and cdf function to calculate various statistics. The
first is the cdf area difference which is:

cdf area difference =

∫ ∞
−∞
‖CDFa(x)− CDFb(x)‖dx (33)

This given an idea about how far apart the two pieces of data are, and it will have units of x.

The common area between the two pdfs is calculated. If there is perfect overlap, this will be
1.0, if there is no overlap, this will be 0.0. The formula used is:

pdf common area =

∫ ∞
−∞

min(PDFa(x), PDFb(x))dx (34)
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The difference pdf between the two pdfs is calculated. This is calculated as:

fZ(z) =

∫ ∞
−∞

fX(x)fY (x− z)dx (35)

This produces a pdf that contains information about the difference between the two pdfs. The mean
can be calculated as (and will be calculated only if fz is true):

z̄ =

∫ ∞
−∞

zfZ(z)dz (36)

The mean can be used to get an signed difference between the pdfs, which shows how their means
compare.

The variance of the difference pdf can be calculated as (and will be calculated only if fz is true):

var =

∫ ∞
−∞

(z − z̄)2fZ(z)dz (37)

The sum of the difference function is calculated if fz is true, and is:

sum =

∫ ∞
−∞

fz(z)dz (38)

This should be 1.0, and if it is different that points to approximations in the calculation.

Example:

<Simulation>
...
<Models>

...
<PostProcessor name="stat_stuff"

subType="ComparisonStatistics">
<kind binMethod='sturges'>uniformBins</kind>
<compare>
<data>OriData|Output|tsin_TEMPERATURE</data>
<reference name='normal_410_2' />

</compare>
<compare>
<data>OriData|Output|tsin_TEMPERATURE</data>
<data>OriData|Output|tsout_TEMPERATURE</data>

</compare>
</PostProcessor>
<PostProcessor name="stat_stuff2"

subType="ComparisonStatistics">

383



<kind numBins="6">equalProbability</kind>
<compare>

<data>OriData|Output|tsin_TEMPERATURE</data>
</compare>
<Distribution class='Distributions'

type='Normal'>normal_410_2</Distribution>
</PostProcessor>
...

</Models>
...
<Distributions>

<Normal name='normal_410_2'>
<mean>410.0</mean>
<sigma>2.0</sigma>

</Normal>
</Distributions>

</Simulation>

15.5.3 ImportanceRank

The ImportanceRank post-processor is specifically used to compute sensitivity indices and im-
portance indices with respect to input parameters associated with multivariate normal distributions.
In addition, the user can also request the transformation matrix and the inverse transformation ma-
trix when the PCA reduction is used. In order to use the ImportanceRank PP, the user needs to set
the subType of a <PostProcessor> node:

<PostProcessor name=’ppName’ subType=’ImportanceRank’/>.

Several sub-nodes are available:

• <what>, comma separated string, required field, List of quantities to be computed. Cur-
rently the quantities available are:

– ’SensitivityIndex’: used to measure the impact of sensitivities on the model.

– ’ImportanceIndex’: used to measure the impact of sensitivities and input uncer-
tainties on the model.

– ’PCAIndex’: the indices of principal component directions, used to measure the im-
pact of principal component directions on input covariance matrix. Note: ’PCAIndex’
can be only requested when subnode <latent> is defined in <features>.

– ’transformation’: the transformation matrix used to map the latent variables to
the manifest variables in the original input space.
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– ’InverseTransformation’: the inverse transformation matrix used to map the
manifest variables to the latent variables in the transformed space.

– ’ManifestSensitivity’: the sensitivity coefficients of <target>with respect
to <manifest> variables defined in <features>.
Note: In order to request ’transformation’matrix or ’InverseTransformation’
matrix or ’ManifestSensitivity’, the subnodes <latent> and <manifest>
under <features> are required (more details can be found in the following).

Note: For each computed quantity, RAVEN will define a unique variable name so that the
data can be accessible by the users through RAVEN entities DataObjects and OutStreams.
These variable names are defined as follows:

– ’SensitivityIndex’: ‘sensitivityIndex’ + ‘ ’ + ‘targetVariableName’ + ‘ ’ + ‘la-
tentFeatureVariableName’

– ’ImportanceIndex’: ‘importanceIndex’ + ‘ ’ + ‘targetVariableName’ + ‘ ’ + ‘la-
tentFeatureVariableName’

– ’PCAIndex’: ‘pcaIndex’ + ‘ ’ + ‘latentFeatureVariableName’

– ’transformation’: ‘transformation’ + ‘ ’ + ‘manifestFeatureVariableName’ + ‘ ’
+ ‘latentFeatureVariableName’

– ’InverseTransformation’: ‘inverseTransformation’ + ‘ ’ + ‘latentFeatureVari-
ableName’ + ‘ ’ + ‘manifestFeatureVariableName’

– ’ManifestSensitivity’: ‘manifestSensitivity’ + ‘ ’ + ‘targetVariableName’ +
‘ ’ + ‘manifestFeatureVariableName’

If all the quantities need to be computed, the user can input in the body of <what> the string
’all’. Note: ’all’ equivalent to ’SensitivityIndex, ImportanceIndex,
PCAIndex’.

Since the transformation and InverseTransformation matrix can be very large, they are not
printed with option ’all’. In order to request the transformation matrix (or inverse trans-
formation matrix) from this post processor, the user need to specify ’transformation’
or ’InverseTransformation’ in <what>. In addition, both <manifest> and
<latent> subnodes are required and should be defined in node <features>. For exam-
ple, let L,P represent the transformation and inverse transformation matrices, respectively.
We will define vectors x as manifest variables and vectors y as latent variables. If a absolute
covariance matrix is used in given distribution, the following equation will be used:

δx = L ∗ y

y = P ∗ δx
If a relative covariance matrix is used in given distribution, the following equation will be
used:
δx
µ

= L ∗ y
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y = P ∗ δx
µ

where δx denotes the changes in the input vector x, and µ denotes the mean values of the
input vector x.

• <features>, XML node, required parameter, used to specify the information for the
input variables. In this xml-node, the following xml sub-nodes need to be specified:

– <manifest>,XML node, optional parameter, used to indicate the input variables
belongs to the original input space. It can accept the following child node:

* <variables>,comma separated string, required field, lists manifest variables.

* <dimensions>, comma separated integer, optional field, lists the dimensions
corresponding to the manifest variables. If not provided, the dimensions are deter-
mined by the order indices of given manifest variables.

– <latent>,XML node, optional parameter, used to indicate the input variables be-
longs to the transformed space. It can accept the following child node:

* <variables>,comma separated string, required field, lists latent variables.

* <dimensions>, comma separated integer, optional field, lists the dimensions
corresponding to the latent variables. If not provided, the dimensions are deter-
mined by the order indices of given latent variables.

Note: At least one of the subnodes, i.e. <manifest> and <latent> needs to be
specified.

• <targets>, comma separated string, required field, lists output responses.

• <mvnDistribution>, string, required field, specifies the multivariate normal distribu-
tion name. The <MultivariateNormal> node must be present. It requires two at-
tributes:

– class, required string attribute, is the main “class” the listed object is from, the only
acceptable class for this post-processor is ’Distributions’;

– type, required string attribute, is the type of distributions, the only acceptable type is
’MultivariateNormal’

Here is an example to show the user how to request the transformation matrix, the inverse trans-
formation matrix, the manifest sensitivities and other quantities.

Example:

<Simulation>
...
<Models>

...
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<PostProcessor name='aUserDefinedName'
subType='ImportanceRank'>
<what>SensitivityIndex,ImportanceIndex,Transformation,

InverseTransformation,ManifestSensitivity</what>
<features>
<manifest>

<variables>x1,x2</variables>
<dimensions>1,2</dimensions>

</manifest>
<latent>

<variables>latent1</variables>
<dimensions>1</dimensions>

</latent>
</features>
<targets>y</targets>
<mvnDistribution>MVN</mvnDistribution>

</PostProcessor>
...

</Models>
...

</Simulation>

The calculation results can be accessible via variables “sensitivityIndex y latent1, importan-
ceIndex y latent1, manifestSensitivity y x1, manifestSensitivity y x2, transformation x1 latent1,
transformation x2 latent1, inverseTransformation latnet1 x1, inverseTransformation laent1 x2” through
RAVEN entities DataObjects and OutStreams.

15.5.4 SafestPoint

The SafestPoint post-processor provides the coordinates of the farthest point from the limit surface
that is given as an input. The safest point coordinates are expected values of the coordinates of the
farthest points from the limit surface in the space of the “controllable” variables based on the
probability distributions of the “non-controllable” variables.

The term “controllable” identifies those variables that are under control during the system op-
eration, while the “non-controllable” variables are stochastic parameters affecting the system be-
haviour randomly.

The “SafestPoint” post-processor requires the set of points belonging to the limit surface, which
must be given as an input. The probability distributions as “Assembler Objects” are required in the
“Distribution” section for both “controllable” and “non-controllable” variables.
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The sampling method used by the “SafestPoint” is a “value” or “CDF” grid. At present only
the “equal” grid type is available.

In order to use the Safest Point PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’SafestPoint’/>.

Several sub-nodes are available:

• <Distribution>, Required, represents the probability distributions of the “controllable”
and “non-controllable” variables. These are Assembler Objects, each of these nodes must
contain 2 attributes that are used to identify those within the simulation framework:

– class, required string attribute, is the main “class” the listed object is from.

– type, required string attribute, is the object identifier or sub-type.

• <outputName>, string, required field, specifies the name of the output variable where the
probability is going to be stored. Note: This variable name must be listed in the <Output>
field of the Output DataObject

• <controllable>, XML node, required field, lists the controllable variables. Each vari-
able is associated with its name and the two items below:

– <distribution> names the probability distribution associated with the control-
lable variable.

– <grid> specifies the type, steps, and tolerance of the sampling grid.

• <non-controllable>, XML node, required field, lists the non-controllable variables.
Each variable is associated with its name and the two items below:

– <distribution> names the probability distribution associated with the non-controllable
variable.

– <grid> specifies the type, steps, and tolerance of the sampling grid.

Example:

<Simulation>
...

<Models>
...
<PostProcessor name='SP' subType='SafestPoint'>

<Distribution class='Distributions'
type='Normal'>x1_dst</Distribution>
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<Distribution class='Distributions'
type='Normal'>x2_dst</Distribution>

<Distribution class='Distributions'
type='Normal'>gammay_dst</Distribution>

<controllable>
<variable name='x1'>

<distribution>x1_dst</distribution>
<grid type='value' steps='20'>1</grid>

</variable>
<variable name='x2'>

<distribution>x2_dst</distribution>
<grid type='value' steps='20'>1</grid>

</variable>
</controllable>
<non-controllable>
<variable name='gammay'>

<distribution>gammay_dst</distribution>
<grid type='value' steps='20'>2</grid>

</variable>
</non-controllable>

</PostProcessor>
...

</Models>
...

</Simulation>

15.5.5 LimitSurface

The LimitSurface post-processor is aimed to identify the transition zones that determine a change
in the status of the system (Limit Surface).

In order to use the LimitSurface PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’LimitSurface’/>.

Several sub-nodes are available:

• <parameters>, comma separated string, required field, lists the parameters that define
the uncertain domain and from which the LS needs to be computed.
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• <tolerance>, float, optional field, sets the absolute value (in CDF) of the convergence
tolerance. This value defines the coarseness of the evaluation grid.
Default: 1.0e-4

• <side>, string, optional field, in this node the user can specify which side of the limit
surface needs to be computed. Three options are available:
negative, Limit Surface corresponding to the goal function value of “-1”;
positive, Limit Surface corresponding to the goal function value of “1”;
both, either positive and negative Limit Surface is going to be computed.
Default: negative

• Assembler Objects These objects are either required or optional depending on the function-
ality of the Adaptive Sampler. The objects must be listed with a rigorous syntax that, except
for the xml node tag, is common among all the objects. Each of these nodes must contain 2
attributes that are used to map those within the simulation framework:

– class, required string attribute, is the main “class” of the listed object. For example,
it can be “Models,” “Functions,” etc.

– type, required string attribute, is the object identifier or sub-type. For example, it
can be “ROM,” “External,” etc.

The LimitSurface post-processor requires or optionally accepts the following objects’ types:

– <ROM>, string, optional field, body of this xml node must contain the name of a ROM
defined in the <Models> block (see section 15.3).

– <Function>, string, required field, the body of this xml block needs to contain the
name of an External Function defined within the <Functions> main block (see sec-
tion 16). This object represents the boolean function that defines the transition bound-
aries. This function must implement a method called residuumSign(self), that returns
either -1 or 1, depending on the system conditions (see section 16).

Example:

<Simulation>
...
<Models>
...

<PostProcessor name="computeLimitSurface"
subType='LimitSurface' verbosity='debug'>
<parameters>x0,y0</parameters>
<ROM class='Models' type='ROM'>Acc</ROM>
<!-- Here, you can add a ROM defined in Models block.

If it is not Present, a nearest neighbor algorithm
will be used.
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-->
<Function class='Functions' type='External'>
goalFunctionForLimitSurface

</Function>
</PostProcessor>
...

</Models>
...

</Simulation>

15.5.6 LimitSurfaceIntegral

The LimitSurfaceIntegral post-processor is aimed to compute the likelihood (probability) of the
event, whose boundaries are represented by the Limit Surface (either from the LimitSurface post-
processor or Adaptive sampling strategies). The inputted Limit Surface needs to be, in the Post-
Process step, of type PointSet and needs to contain both boundary sides (-1.0, +1.0).
The LimitSurfaceIntegral post-processor accepts as output PointSets only.

In order to use the LimitSurfaceIntegral PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’LimitSurfaceIntegral’/>.

Several sub-nodes are available:

• <variable>, XML node, required parameter can specify the following attribute:

– name, required string attribute, user-defined name of this variable.

– shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape=“2,3” will provide a 2 by 3
matrix of values, while shape=“10” will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child node:

– <outputName>, string, required field, specifies the name of the output variable
where the probability is going to be stored. Note: This variable name must be listed in
the <Output> field of the Output DataObject

– <distribution>, string, optional field, name of the distribution that is associ-
ated to this variable. Its name needs to be contained in the <Distributions>
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block explained in Section 9. If this node is not present, the <lowerBound> and
<upperBound> XML nodes must be inputted. It requires the following two at-
tributes:

* class, required string attribute, is the main “class” the listed object is from, the
only acceptable class for this post-processor is ’Distributions’;

* type, required string attribute, is the type of distributions, i.e. Normal, Uniform.

– <lowerBound>, float, optional field, lower limit of integration domain for this di-
mension (variable). If this node is not present, the <distribution> XML node
must be inputted.

– <upperBound>, float, optional field, upper limit of integration domain for this di-
mension (variable). If this node is not present, the <distribution> XML node
must be inputted.

• <tolerance>, float, optional field, specifies the tolerance for numerical integration con-
fidence.
Default: 1.0e-4

• <integralType>, string, optional field, specifies the type of integrations that need to be
used. Currently only MonteCarlo integration is available
Default: MonteCarlo

• <computeBounds>, bool, optional field, activates the computation of the bounding er-
ror of the limit surface integral ( maximum error in the identification of the limit surface
location). If True, the bounding error is stored in a variable named as <outputName>
appending the suffix “ err”. For example, if <outputName> is “EventProbability”, the
bounding error will be stored as “EventProbability err” (this variable name must be listed as
variable in the output DataObject).
Default: False

• <seed>, integer, optional field, specifies the random number generator seed.
Default: 20021986

• <target>, string, optional field, specifies the target name that represents the f (x̄) that
needs to be integrated.
Default: last output found in the inputted PointSet

Example:

<Simulation>
...
<Models>
...

<PostProcessor name="LimitSurfaceIntegralDistributions"
subType='LimitSurfaceIntegral'>

392



<tolerance>0.0001</tolerance>
<integralType>MonteCarlo</integralType>
<seed>20021986</seed>
<target>goalFunctionOutput</target>
<outputName>EventProbability</outputName>
<variable name='x0'>

<distribution>x0_distrib</distribution>
</variable>
<variable name='y0'>

<distribution>y0_distrib</distribution>
</variable>

</PostProcessor>
<PostProcessor name="LimitSurfaceIntegralLowerUpperBounds"

subType='LimitSurfaceIntegral'>
<tolerance>0.0001</tolerance>
<integralType>MonteCarlo</integralType>
<seed>20021986</seed>
<target>goalFunctionOutput</target>
<outputName>EventProbability</outputName>
<variable name='x0'>

<lowerBound>-2.0</lowerBound>
<upperBound>12.0</upperBound>

</variable>
<variable name='y0'>

<lowerBound>-1.0</lowerBound>
<upperBound>11.0</upperBound>

</variable>
</PostProcessor>
...

</Models>
...

</Simulation>

15.5.7 External

The External post-processor will execute an arbitrary python function defined externally using the
Functions interface (see Section 16 for more details).

In order to use the External PP, the user needs to set the subType of a <PostProcessor>
node:
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<PostProcessor name=’ppName’ subType=’External’/>.

Several sub-nodes are available:

• <method>, comma separated string, required field, lists the method names of an exter-
nal Function that will be computed (each returning a post-processing value). Note: New
variable names will be defined as: “Function Name in this post-processor” + “ “ + “variable
name in XML node <method>”. These new varialbes will be used to store the computed
values from the list of methods, and can be accessed by the users through RAVEN entities
DataObjects and OutStreams.

• <Function>, xml node, required string field, specifies the name of a Function where
the methods listed above are defined. Note: This name should match one of the Functions
defined in the <Functions> block of the input file. The objects must be listed with a
rigorous syntax that, except for the XML node tag, is common among all the objects. Each
of these sub-nodes must contain 2 attributes that are used to map them within the simulation
framework:

– class, required string attribute, is the main “class” the listed object is from, the only
acceptable class for this post-processor is ’Functions’;

– type, required string attribute, is the object identifier or sub-type, the only acceptable
type for this post-processor is ’External’.

This Post-Processor accepts as Input/Output both ’PointSet’ and ’HistorySet’:

• If a ’PointSet’ is used as Input, the parameters are passed in the external ’Function’
as numpy arrays. The methods’ return type must be either a new array or a scalar. In the
following it is reported an example with two methods, one that returns a scalar and the other
one that returns an array:

import numpy as np
def sum(self):

return np.sum(self.aParameterInPointSet)

def sumTwoArraysAndReturnAnotherone(self):
return self.aParamInPointSet1+self.aParamInPointSet2

• If a ’HistorySet’ is used as Input, the parameters are passed in the external ’Function’
as a list of numpy arrays. The methods’ return type must be either a new list of arrays
(if the Output is another ’HistorySet’), a scalar or a single array (if the Output is
’PointSet’ . In the following it is reported an example with two methods, one that
returns a new list of arrays (Output = HistorySet) and the other one that returns an array
(Output = PointSet):
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import numpy as np
def newHistorySetParameter(self):

x = []*len(self.time)
for history in range(len(self.time)):

for ts in range(len(self.time[history])):
if self.time[history][ts] >= 0.001: break

x[history] = self.x[history][ts:]
return x

def aNewPointSetParameter(self):
x = []*len(self.time)
for history in range(len(self.time)):

x[history] = self.x[history][-1]
return x

Example:

<Simulation>
...
<Models>

...
<PostProcessor name="externalPP" subType='External'

verbosity='debug'>
<method>Delta,Sum</method>
<Function class='Functions'

type='External'>operators</Function>
<!-- Here, you can add a Function defined in the

Functions block. This should be present or
else RAVEN will not know where to find the
defined methods. -->

</PostProcessor>
...

</Models>
...

</Simulation>

Note: The calculation results from this post-processor are stored in the internal variables.
These variables are accessible by the users through RAVEN entities DataObjects and OutStreams.
The names of these variables are defined as: “Function Name in this post-processor” + “ “ + “vari-
able name in XML node <method>”. For example, in previous case, variables “operators Delta”
and “operators Sum” are defined by RAVEN to store the outputs of this post-processor.
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15.5.8 TopologicalDecomposition

The TopologicalDecomposition post-processor will compute an approximated hierarchical Morse-
Smale complex which will add two columns to a dataset, namely minLabel and maxLabel that
can be used to decompose a dataset.

The topological post-processor can also be run in ‘interactive’ mode, that is by passing the
keyword interactive to the command line of RAVEN’s driver. In this way, RAVEN will
initiate an interactive UI that allows one to explore the topological hierarchy in real-time and
adjust the simplification setting before adjusting a dataset. Use in interactive mode will replace
the parameter <simplification> described below with whatever setting is set in the UI upon
exiting it.

In order to use the TopologicalDecomposition post-processor, the user needs to set the attribute
subType: <PostProcessor subType=’TopologicalDecomposition’>. The fol-
lowing is a list of acceptable sub-nodes:

• <graph> , string, optional field, specifies the type of neighborhood graph used in the
algorithm, available options are:

– beta skeleton

– relaxed beta skeleton

– approximate knn

Default: beta skeleton

• <gradient>, string, optional field, specifies the method used for estimating the gradient,
available options are:

– steepest

Default: steepest

• <beta>, float in the range: (0,2], optional field, is only used when the <graph> is set to
beta skeleton or relaxed beta skeleton.
Default: 1.0

• <knn>, integer, optional field, is the number of neighbors when using the ’approximate
knn’ for the <graph> sub-node and used to speed up the computation of other graphs
by using the approximate knn graph as a starting point for pruning. -1 means use a fully
connected graph.
Default: -1
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• <weighted>, boolean, optional, a flag that specifies whether the regression models should
be probability weighted.
Default: False

• <interactive>, if this node is present and the user has specified the keyword interactive
at the command line, then this will initiate a graphical interface for exploring the different
simplification levels of the topological hierarchy. Upon exit of the graphical interface, the
specified simplification level will be updated to use the last value of the graphical interface
before writing any “output” results.

• <persistence>, string, optional field, specifies how to define the hierarchical simplifi-
cation by assigning a value to each local minimum and maximum according to the one of
the strategy options below:

– difference - The function value difference between the extremum and its closest-
valued neighboring saddle.

– probability - The probability integral computed as the sum of the probability of
each point in a cluster divided by the count of the cluster.

– count - The count of points that flow to or from the extremum.

Default: difference

• <simplification>, float, optional field, specifies the amount of noise reduction to ap-
ply before returning labels.
Default: 0

• <parameters>, comma separated string, required field, lists the parameters defining the
input space.

• <response>, string, required field, is a single variable name defining the scalar output
space.

Example:

<Simulation>
...
<Models>

...
<PostProcessor name="***" subType='TopologicalDecomposition'>

<graph>beta skeleton</graph>
<gradient>steepest</gradient>
<beta>1</beta>
<knn>8</knn>
<normalization>None</normalization>
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<parameters>X,Y</parameters>
<response>Z</response>
<weighted>true</weighted>
<simplification>0.3</simplification>
<persistence>difference</persistence>

</PostProcessor>
...

<Models>
...

<Simulation>

15.5.9 DataMining

Knowledge discovery in databases (KDD) is the process of discovering useful knowledge from a
collection of data. This widely used data mining technique is a process that includes data prepa-
ration and selection, data cleansing, incorporating prior knowledge on data sets and interpreting
accurate solutions from the observed results. Major KDD application areas include marketing,
fraud detection, telecommunication and manufacturing.

DataMining is the analysis step of the KDD process. The overall of the data mining process is
to extract information from a data set and transform it into an understandable structure for further
use. The actual data mining task is the automatic or semi-automatic analysis of large quantities
of data to extract previously unknown, interesting patterns such as groups of data records (cluster
analysis), unusual records (anomaly detection), and dependencies (association rule mining).
In order to use the DataMining post-processor, the user needs to set the attribute subType:

<PostProcessor subType= ’DataMining’>.

The following is a list of acceptable sub-nodes:

• <KDD> string,required field, the subnodes specifies the necessary information for the algo-
rithm to be used in the postprocessor. The <KDD> has the required attribute: lib, the name
of the library the algorithm belongs to. Current algorithms applied in the KDD model is
based on SciKit-Learn library. Thus currently there is only one library:

– ’SciKitLearn’

The <KDD> has the optional attribute: labelFeature, the name associated to labels or
dimensions generated by the DataMining post-processor. The default name depends on the
type of algorithm employed. For clustering and mixture models it is the name of the Post-
Processor followed by “Labels” (e.g., if the name of a clustering PostProcessor is “kMeans”
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then the default name associated to the labels is “kMeansLabels” if not specified in the at-
tribute labelFeature). For decomposition and manifold models, the default names are
the name of the PostProcessor followed by “Dimension” and an integer identifier beginning
with 1. (e.g., if the name of a dimensionality reduction PostProcessor is “dr” and the user
specifies 3 components, then the output dataObject will have three new outputs named “drDi-
mension1,” “drDimension2,” and “drDimension3.”). Note: The “Labels” are automatically
added to the output DataObjects. It is also accessible by the users using the variable name
defined above.

15.5.9.1 SciKitLearn

’SciKitLearn’ is based on algorithms in SciKit-Learn library, and it performs data mining
over PointSet and HistorySet. Note that for HistorySet’s ’SciKitLearn’ performs the task
given in <SKLType> (see below) for each time step, and so only synchronized HistorySet can be
used as input to this model. For unsynchronized HistorySet, use ’HistorySetSync’ method
in ’Interfaced’ post-processor to synchronize the input data before using ’SciKitLearn’.
The rest of this subsection and following subsection is dedicated to the ’SciKitLearn’ library.

The temporal variable for a HistorySet ’SciKitLearn’ is specified in the <pivotParameter>
node:

• <pivotParameter>, string, optional parameter specifies the pivot variable (e.g., time,
etc) in the input HistorySet.
Default: None.

The algorithm for the dataMining is chosen by the subnode <SKLType> under the parent node
<KDD>. The format is same as in 15.3.7. However, for the completeness sake, it is repeated here.

The data that are used in the training of the DataMining postprocessor are suplied with subn-
ode <Features> in the parent node <KDD>.

• <SKLtype>, vertical bar (|) separated string, required field, contains a string that repre-
sents the data mining algorithm to be used. As mentioned, its format is:
<SKLtype>mainSKLclass|algorithm</SKLtype> where the first word (before
the “|” symbol) represents the main class of algorithms, and the second word (after the “|”
symbol) represents the specific algorithm.

• <Features>, string, required field, defines the data to be used for training the data mining
algorithm. It can be:

– the name of the variable in the defined dataObject entity
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– the location (i.e. input or output). In this case the data mining is applied to all the
variables in the defined space.

The <KDD> node can have either optional or required subnodes depending on the dataMining
algorithm used. The possible subnodes will be described separately for each algorithm below. The
time dependent clustering data mining algorithms have a <reOrderStep> option that will try
and keep the same labels on the clusters. The higher the number, the longer the history that the
clustering algorithm will look through to maintain the same labeling between time steps.

All the available algorithms are described in the following sections.

15.5.9.2 Gaussian mixture models

A Gaussian mixture model is a probabilistic model that assumes all the data points are generated
from a mixture of a finite number of Gaussian distributions with unknown parameters.
Scikit-learn implements different classes to estimate Gaussian mixture models, that correspond to
different estimation strategies, detailed below.

15.5.9.2.1 GMM classifier

The GMM object implements the expectation-maximization (EM) algorithm for fitting mixture-
of-Gaussian models. The GMM comes with different options to constrain the covariance of the
difference classes estimated: spherical, diagonal, tied or full covariance.

In order to use the Gaussian Mixture Model, the user needs to set the sub-node:

<SKLtype>mixture|GMM</SKLtype>.

In addition to this XML node, several others are available:

• <n components>, integer, optional field Number of mixture components.
Default: 1

• <covariance type>, string, optional field, describes the type of covariance parameters
to use. Must be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.
Default: diag

• <random state>, integer seed or random number generator instance, optional field, A
random number generator instance
Default: 0 or None
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• <min covar>, float, optional field, Floor on the diagonal of the covariance matrix to pre-
vent overfitting.
Default: 1e-3.

• <thresh>, float, optional field, convergence threshold.
Default: 0.01

• <n iter>, integer, optional field, Number of EM iterations to perform.
Default: 100

• <n init>, integer, optional, Number of initializations to perform. the best results is kept.
Default: 1

• <init params>, string, optional field, The method used to initialize the weights, the
means and the precisions. Must be one of “kmeans” (responsibilities are initialized using
kmeans) or “random” (responsibilities are initialized randomly)
Default: kmeans

Example:

<Simulation>
...
<Models>

...
<PostProcessor name='PostProcessorName'

subType='DataMining'>
<KDD lib='SciKitLearn'>

<Features>variableName</Features>
<SKLtype>mixture|GMM</SKLtype>
<n_components>2</n_components>
<covariance_type>spherical</covariance_type>

</KDD>
</PostProcessor>

...
<Models>
...

<Simulation>

15.5.9.2.2 Variational GMM Classifier (VBGMM)

The VBGMM object implements a variant of the Gaussian mixture model with variational
inference algorithms. The API is identical to GMM.
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In order to use the Variational Gaussian Mixture Model, the user needs to set the sub-node:

<SKLtype>mixture|VBGMM</SKLtype>.

In addition to this XML node, several others are available:

• <n components>, integer, optional field Number of mixture components.
Default: 1

• <covariance type>, string, optional field, describes the type of covariance parameters
to use. Must be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.
Default: diag

• <alpha>, float, optional field, represents the concentration parameter of the dirichlet pro-
cess. Intuitively, the Dirichlet Process is as likely to start a new cluster for a point as it is to
add that point to a cluster with alpha elements. A higher alpha means more clusters, as the
expected number of clusters is α ∗ log(N).
Default: 1.

15.5.9.3 Clustering

Clustering of unlabeled data can be performed with this subType of the DataMining PostProcessor.

An overwiev of the different clustering algorithms is given in Table5.
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Table 5: Overview of Clustering Methods

Method name Parameters Scalability Usecase Geometry
(metric used)

K-Means
number of
clusters

Very large
n samples,
medium
n clusters with
MiniBatch
code

General-purpose,
even cluster size,
flat geometry, not
too many clusters

Distances
between points

Affinity
propagation

damping,
sample
preference

Not scalable
with
n samples

Many clusters,
uneven cluster size,
non-flat geometry

Graph distance
(e.g. nearest-
neighbor
graph)

Mean-shift bandwidth
Not scalable
with
n samples

Many clusters,
uneven cluster size,
non-flat geometry

Distances
between points

Spectral
clustering

number of
clusters

Medium
n samples,
small
n clusters

Few clusters, even
cluster size, non-flat
geometry

Graph distance
(e.g. nearest-
neighbor
graph)

Ward
hierarchical
clustering

number of
clusters

Large
n samples and
n clusters

Many clusters,
possibly
connectivity
constraints

Distances
between points

Agglomera-
tive
clustering

number of
clusters,
linkage type,
distance

Large
n samples and
n clusters

Many clusters,
possibly
connectivity
constraints, non
Euclidean distances

Any pairwise
distance

DBSCAN
neighborhood
size

Very large
n samples,
medium
n clusters

Non-flat geometry,
uneven cluster sizes

Distances
between nearest
points

Gaussian
mixtures

many Not scalable
Flat geometry, good
for density
estimation

Mahalanobis
distances to
centers

403



15.5.9.3.1 K-Means Clustering

The KMeans algorithm clusters data by trying to separate samples in n groups of equal vari-
ance, minimizing a criterion known as the inertia or within-cluster sum-of-squares. This algorithm
requires the number of clusters to be specified. It scales well to large number of samples and has
been used across a large range of application areas in many different fields

In order to use the K-Means Clustering, the user needs to set the sub-node:

<SKLtype>cluster|KMeans</SKLtype>.

In addition to this XML node, several others are available:

• <n clusters>, integer, optional field The number of clusters to form as well as the num-
ber of centroids to generate.
Default: 8

• <max iter>, integer, optional field, Maximum number of iterations of the k-means algo-
rithm for a single run.
Default: 300

• <n init>, integer, optional field, Number of time the k-means algorithm will be run with
different centroid seeds. The final results will be the best output of n init consecutive runs in
terms of inertia.
Default: 3

• <init>, string, optional, Method for initialization, k-means++’, ‘random’ or an ndarray:

– ‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence.

– ‘random’: choose k observations (rows) at random from data for the initial centroids.

– If an ndarray is passed, it should be of shape (n clusters, n features) and gives the initial
centers.

• <precompute distances>, boolean, optional field, Precompute distances (if true faster
but takes more memory).
Default: true

• <tol>, float, optional field, Relative tolerance with regards to inertia to declare conver-
gence.
Default: 1e-4

• <n jobs>, integer, optional field, The number of jobs to use for the computation. This
works by breaking down the pairwise matrix into n jobs even slices and computing them in
parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all,
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which is useful for debugging. For n jobs below -1, (n cpus + 1 + n jobs) are used. Thus for
n jobs = -2, all CPUs but one are used.
Default: 1

• <random state>, integer or numpy.RandomState, optional field The generator used to
initialize the centers. If an integer is given, it fixes the seed.
Default: the global numpy random number generator.

Example:

<Simulation>
...
<Models>

...
<PostProcessor name='PostProcessorName'

subType='DataMining'>
<KDD lib='SciKitLearn'>

<Features>variableName</Features>
<SKLtype>cluster|KMeans</SKLtype>
<n_clusters>2</n_clusters>
<tol>0.0001</tol>
<init>random</init>

</KDD>
</PostProcessor>

...
<Models>
...

<Simulation>

15.5.9.3.2 Mini Batch K-Means

The MiniBatchKMeans is a variant of the KMeans algorithm which uses mini-batches to reduce
the computation time, while still attempting to optimise the same objective function. Mini-batches
are subsets of the input data, randomly sampled in each training iteration.

MiniBatchKMeans converges faster than KMeans, but the quality of the results is reduced. In
practice this difference in quality can be quite small.

In order to use the Mini Batch K-Means Clustering, the user needs to set the sub-node:

<SKLtype>cluster|MiniBatchKMeans</SKLtype>.

In addition to this XML node, several others are available:
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• <n clusters>, integer, optional field The number of clusters to form as well as the num-
ber of centroids to generate.
Default: 8

• <max iter>, integer, optional field, Maximum number of iterations of the k-means algo-
rithm for a single run.
Default: 100

• <max no improvement>, integer, optional firld, Control early stopping based on the
consecutive number of mini batches that does not yield an improvement on the smoothed
inertia. To disable convergence detection based on inertia, set max no improvement to None.

Default: 10

• <tol>, float, optional field, Control early stopping based on the relative center changes as
measured by a smoothed, variance-normalized of the mean center squared position changes.
This early stopping heuristics is closer to the one used for the batch variant of the algorithms
but induces a slight computational and memory overhead over the inertia heuristic. To dis-
able convergence detection based on normalized center change, set tol to 0.0 (default).
Default: 0.0

• <batch size>, integer, optional field, Size of the mini batches.
Default: 100

• init size, integer, optional field, Number of samples to randomly sample for speeding up
the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by
running a batch KMeans on a random subset of the data. This needs to be larger than k.,
Default: 3 * <batch size>

• <init>, string, optional, Method for initialization, k-means++’, ‘random’ or an ndarray:

– ‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to
speed up convergence.

– ‘random’: choose k observations (rows) at random from data for the initial centroids.

– If an ndarray is passed, it should be of shape (n clusters, n features) and gives the initial
centers.

• <precompute distances>, boolean, optional field, Precompute distances (if true faster
but takes more memory).
Default: true

• <n init>, integer, optional field, Number of time the k-means algorithm will be run with
different centroid seeds. The final results will be the best output of n init consecutive runs in
terms of inertia.
Default: 3

406



• <compute labels>, boolean, optional field, Compute label assignment and inertia for
the complete dataset once the minibatch optimization has converged in fit.
Default: True

• <random state>, integer or numpy.RandomState, optional field The generator used to
initialize the centers. If an integer is given, it fixes the seed.
Default: the global numpy random number generator.

• reassignment ratio, <float, optional field>, Control the fraction of the maximum
number of counts for a center to be reassigned. A higher value means that low count centers
are more easily reassigned, which means that the model will take longer to converge, but
should converge in a better clustering.
Default: 0.01

15.5.9.3.3 Affinity Propagation

AffinityPropagation creates clusters by sending messages between pairs of samples until con-
vergence. A dataset is then described using a small number of exemplars, which are identified as
those most representative of other samples. The messages sent between pairs represent the suitabil-
ity for one sample to be the exemplar of the other, which is updated in response to the values from
other pairs. This updating happens iteratively until convergence, at which point the final exemplars
are chosen, and hence the final clustering is given.

In order to use the AffinityPropogation Clustering, the user needs to set the sub-node:

<SKLtype>cluster|AffinityPropogation</SKLtype>.

In addition to this XML node, several others are available:

• <damping>, float, optional field, Damping factor between 0.5 and 1.
Default: 0.5

• <convergence iter>, integer, optional field, Number of iterations with no change in
the number of estimated clusters that stops the convergence.
Default: 15

• <max iter>, integer, optional field, Maximum number of iterations.
Default: 200

• <copy>, boolean, optional field, Make a copy of input data or not.
Default: True

• <preference>, array-like, shape (n samples,) or float, optional field, Preferences for
each point - points with larger values of preferences are more likely to be chosen as exem-
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plars. The number of exemplars, ie of clusters, is influenced by the input preferences value.
Default: If the preferences are not passed as arguments, they will be set to the median of the
input similarities.

• <affinity>, string, optional field,Which affinity to use. At the moment precomputed
and euclidean are supported. euclidean uses the negative squared euclidean distance between
points.
Default: “euclidean“

• <verbose>, boolean, optional field, Whether to be verbose.
Default: False

15.5.9.3.4 Mean Shift

MeanShift clustering aims to discover blobs in a smooth density of samples. It is a centroid
based algorithm, which works by updating candidates for centroids to be the mean of the points
within a given region. These candidates are then filtered in a post-processing stage to eliminate
near-duplicates to form the final set of centroids.

In order to use the Mean Shift Clustering, the user needs to set the sub-node:

<SKLtype>cluster|MeanShift</SKLtype>.

In addition to this XML node, several others are available:

• <bandwidth>, float, optional field, Bandwidth used in the RBF kernel. If not given, the
bandwidth is estimated using sklearn.cluster.estimate bandwidth; see the documentation for
that function for hints on scalability.

• <seeds>, array, shape=[n samples, n features], optional field, Seeds used to initialize
kernels. If not set, the seeds are calculated by clustering.get bin seeds with bandwidth as
the grid size and default values for other parameters.

• <bin seeding>, boolean, optional field, If true, initial kernel locations are not locations
of all points, but rather the location of the discretized version of points, where points are
binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to
True will speed up the algorithm because fewer seeds will be initialized.
Default: False Ignored if seeds argument is not None.

• <min bin freq>, integer, optional field, To speed up the algorithm, accept only those
bins with at least min bin freq points as seeds.
Default: 1.

• <cluster all>, boolean, optional field, If true, then all points are clustered, even those
orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false,
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then orphans are given cluster label -1.
Default: True

15.5.9.3.5 Spectral clustering

SpectralClustering does a low-dimension embedding of the affinity matrix between samples,
followed by a KMeans in the low dimensional space. It is especially efficient if the affinity matrix
is sparse and the pyamg module is installed.

In order to use the Spectral Clustering, the user needs to set the sub-node:

<SKLtype>cluster|Spectral</SKLtype>.

In addition to this XML node, several others are available:

• <n clusters>, integer, optional field, The dimension of the projection subspace.
Default: 8

• <affinity>, string, array-like or callable, optional field, If a string, this may be one of:

– ‘nearest neighbors’,

– ‘precomputed’,

– ‘rbf’ or

– one of the kernels supported by sklearn.metrics.pairwise kernels.

Only kernels that produce similarity scores (non-negative values that increase with similar-
ity) should be used. This property is not checked by the clustering algorithm.
Default: ‘rbf’

• <gamma>, float, optional field, Scaling factor of RBF, polynomial, exponential chi2 and
sigmoid affinity kernel. Ignored for affinity =′ nearest neighbors′.
Default: 1.0

• <degree>, float, optional field, Degree of the polynomial kernel. Ignored by other kernels.

Default: 3

• <coef0>, float, optional field, Zero coefficient for polynomial and sigmoid kernels. Ig-
nored by other kernels.
Default: 1

• <n neighbors>, integer, optional field, Number of neighbors to use when constructing
the affinity matrix using the nearest neighbors method. Ignored for affinity=’rbf’.
Default: 10
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• <eigen solver> string, optional field, The eigenvalue decomposition strategy to use:

– None,
– ‘arpack’,
– ‘lobpcg’, or
– ‘amg’

Note: AMG requires pyamg to be installed. It can be faster on very large, sparse problems,
but may also lead to instabilities

• <random state>, integer seed, RandomState instance, or None, optional field, A pseudo
random number generator used for the initialization of the lobpcg eigen vectors decomposi-
tion when eigensolver == ‘amg′ and by the K-Means initialization.
Default: None

• <n init>, integer, optional field, Number of time the k-means algorithm will be run with
different centroid seeds. The final results will be the best output of n init consecutive runs in
terms of inertia.
Default: 10

• <eigen tol>, float, optional field, Stopping criterion for eigendecomposition of the Lapla-
cian matrix when using arpack eigen solver.
Default: 0.0

• <assign labels>, string, optional field, The strategy to use to assign labels in the em-
bedding space. There are two ways to assign labels after the laplacian embedding:

– ‘kmeans’,
– ‘discretize’

k-means can be applied and is a popular choice. But it can also be sensitive to initialization.
Discretization is another approach which is less sensitive to random initialization.
Default: ‘kmeans’

• <kernel params>, dictionary of string to any, optional field, Parameters (keyword ar-
guments) and values for kernel passed as callable object. Ignored by other kernels.
Default: None

Notes
If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements,
and high values means very dissimilar elements, it can be transformed in a similarity matrix that is
well suited for the algorithm by applying the Gaussian (RBF, heat) kernel:

np.exp(−X ∗ ∗2/(2. ∗ delta ∗ ∗2)) (39)

Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix
of the points. If the pyamg package is installed, it is used: this greatly speeds up computation.
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15.5.9.3.6 DBSCAN Clustering

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm views
clusters as areas of high density separated by areas of low density. Due to this rather generic view,
clusters found by DBSCAN can be any shape, as opposed to k-means which assumes that clusters
are convex shaped.

In order to use the DBSCAN Clustering, the user needs to set the sub-node:

<SKLtype>cluster|DBSCAN</SKLtype>.

In addition to this XML node, several others are available:

• <eps>, float, optional field, The maximum distance between two samples for them to be
considered as in the same neighborhood.
Default: 0.5

• <min samples>, integer, optional field, The number of samples in a neighborhood for a
point to be considered as a core point.
Default: 5

• <metric>, string, or callable, optional field The metric to use when calculating distance
between instances in a feature array. If metric is a string or callable, it must be one of the
options allowed by metrics.pairwise.calculate distance for its metric parameter. If metric is
“precomputed”, X is assumed to be a distance matrix and must be square.
Default: ’euclidean’

• <random state>, numpy.RandomState, optional field, The generator used to initialize
the centers.
Default: numpy.random.

15.5.9.3.7 Agglomerative Clustering

Hierarchical clustering is a general family of clustering algorithms that build nested clusters by
merging or splitting them successively. This hierarchy of clusters is represented as a tree (or den-
drogram). The root of the tree is the unique cluster that gathers all of the samples, the leaves being
the clusters with only one sample. The AgglomerativeClustering object performs a hierarchical
clustering using a bottom up approach: each observation starts in its own cluster, and clusters
are successively merged together. The linkage criteria determines the metric used for the merge
strategy:

• Ward: it minimizes the sum of squared differences within all clusters. It is a variance-
minimizing approach and in this sense is similar to the k-means objective function but tack-
led with an agglomerative hierarchical approach.
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• Maximum or complete linkage: it minimizes the maximum distance between observations
of pairs of clusters.

• Average linkage: it minimizes the average of the distances between all observations of pairs
of clusters.

AgglomerativeClustering can also scale to large number of samples when it is used jointly with
a connectivity matrix, but is computationally expensive when no connectivity constraints are added
between samples: it considers at each step all of the possible merges.

In order to use the Agglomerative Clustering, the user needs to set the sub-node:

<SKLtype>cluster|Agglomerative</SKLtype>.

In addition to this XML node, several others are available:

• <n clusters>, int, optional field, The number of clusters to find.
Default: 2

• <connectivity>, array like or callable, optional field, Connectivity matrix. Defines for
each sample the neighboring samples following a given structure of the data. This can be
a connectivity matrix itself or a callable that transforms the data into a connectivity matrix,
such as derived from kneighbors graph. Default is None, i.e, the hierarchical clustering
algorithm is unstructured.
Default: None

• <affinity>, string or callable, optional field, Metric used to compute the linkage. Can
be “euclidean”, “l1”, “l2”, “manhattan”,“cosine”, or “precomputed”. If linkage is “ward”,
only “euclidean” is accepted.
Default: euclidean

• <n components>, int, optional field, Number of connected components. If None the
number of connected components is estimated from the connectivity matrix. NOTE: This
parameter is now directly determined from the connectivity matrix and will be removed in
0.18.

• <linkage>, ward,complete,average, optional field, Which linkage criterion to use. The
linkage criterion determines which distance to use between sets of observation. The al-
gorithm will merge the pairs of cluster that minimize this criterion. Ward minimizes the
variance of the clusters being merged. Average uses the average of the distances of each
observation of the two sets. Complete or maximum linkage uses the maximum distances
between all observations of the two sets..
Default: ward
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15.5.9.3.8 Clustering performance evaluation

Evaluating the performance of a clustering algorithm is not as trivial as counting the number
of errors or the precision and recall of a supervised classification algorithm. In particular any
evaluation metric should not take the absolute values of the cluster labels into account but rather if
this clustering define separations of the data similar to some ground truth set of classes or satisfying
some assumption such that members belong to the same class are more similar that members of
different classes according to some similarity metric.

If the ground truth labels are not known, evaluation must be performed using the model itself.
The Silhouette Coefficient is an example of such an evaluation, where a higher Silhouette Coeffi-
cient score relates to a model with better defined clusters. The Silhouette Coefficient is defined for
each sample and is composed of two scores:

1. The mean distance between a sample and all other points in the same class.

2. The mean distance between a sample and all other points in the next nearest cluster.

The Silhoeutte Coefficient s for a single sample is then given as:

s =
b− a

max(a, b)
(40)

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient
for each sample. In normal usage, the Silhouette Coefficient is applied to the results of a cluster
analysis.

Advantages

• The score is bounded between -1 for incorrect clustering and +1 for highly dense clus-
tering. Scores around zero indicate overlapping clusters.

• The score is higher when clusters are dense and well separated, which relates to a
standard concept of a cluster.

Drawbacks
The Silhouette Coefficient is generally higher for convex clusters than other concepts of
clusters, such as density based clusters like those obtained through DBSCAN.

15.5.9.4 Decomposing signals in components (matrix factorization problems)

15.5.9.4.1 Principal component analysis (PCA)
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• Exact PCA and probabilistic interpretation
Linear Dimensionality reduction using Singular Value Decomposition of the data and keep-
ing only the most significant singular vectors to project the data to a lower dimensional space.
In order to use the Exact PCA, the user needs to set the sub-node:

<SKLtype>decomposition|PCA</SKLtype>.

In addition to this XML node, several others are available:

– <n components>, integer, None or String, optional field, Number of components
to keep. if

– <n components> is not set all components are kept,
Default: all components

– <copy>, boolean, optional field, If False, data passed to fit are overwritten and run-
ning fit(X).transform(X) will not yield the expected results, use fit transform(X) in-
stead.
Default: True

– <whiten>, boolean, optional field, When True the components vectors are divided
by n samples times singular values to ensure uncorrelated outputs with unit component-
wise variances. Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometime improve the predic-
tive accuracy of the downstream estimators by making there data respect some hard-
wired assumptions.
Default: False

Example:

<Simulation>
...
<Models>

...
<PostProcessor name='PostProcessorName'

subType='DataMining'>
<KDD lib='SciKitLearn'>

<Features>variable1,variable2,variable3,
variable4,variable5</Features>

<SKLtype>decomposition|PCA</SKLtype>
<n_components>2</n_components>

</KDD>
</PostProcessor>

...
<Models>
...

<Simulation>
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• Randomized (Approximate) PCA
Linear Dimensionality reduction using Singular Value Decomposition of the data and keep-
ing only the most significant singular vectors to project the data to a lower dimensional space.
In order to use the Randomized PCA, the user needs to set the sub-node:

<SKLtype>decomposition|RandomizedPCA</SKLtype>.

In addition to this XML node, several others are available:

– <n components>, interger, None or String, optional field, Number of components
to keep. if n components is not set all components are kept.
Default: all components

– <copy>, boolean, optional field, If False, data passed to fit are overwritten and run-
ning fit(X).transform(X) will not yield the expected results, use fit transform(X) in-
stead.
Default: True

– <iterated power>, integer, optional field, Number of iterations for the power
method.
Default: 3

– <whiten>, boolean, optional field, When True the components vectors are divided
by n samples times singular values to ensure uncorrelated outputs with unit component-
wise variances. Whitening will remove some information from the transformed signal
(the relative variance scales of the components) but can sometime improve the predic-
tive accuracy of the downstream estimators by making there data respect some hard-
wired assumptions.
Default: False

– <random state>, int, or Random State instance or None, optional field, Pseudo
Random Number generator seed control. If None, use the numpy.random singleton.
Default: None

• Kernel PCA
Non-linear dimensionality reduction through the use of kernels. In order to use the Kernel
PCA, the user needs to set the sub-node:

<SKLtype>decomposition|KernelPCA</SKLtype>.

In addition to this XML node, several others are available:

– <n components>, interger, None or String, optional field, Number of components
to keep. if n components is not set all components are kept.
Default: all components

– <kernel>, string, optional field, name of the kernel to be used, options are:

* linear

* poly
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* rbf

* sigmoid

* cosine

* precomputed

Default: linear <degree>, integer, optional field, Degree for poly kernels, ignored
by other kernels.
Default: 3 <gamma>, float, optional field, Kernel coefficient for rbf and poly kernels,
ignored by other kernels.
Default: 1/n features

– <coef0>, float, optional field, independent term in poly and sigmoig kernels, ignored
by other kernels.

– <kernel params>, mapping of string to any, optional field, Parameters (keyword
arguments) and values for kernel passed as callable object. Ignored by other kernels.
Default: 3

– alpha, int, optional field, Hyperparameter of the ridge regression that learns the inverse
transform (when fit inverse transform=True).
Default: 1.0

– <fit inverse transform>, bool, optional field, Learn the inverse transform for
non-precomputed kernels. (i.e. learn to find the pre-image of a point)
Default: False

– <eigen solver>, string, optional field, Select eigensolver to use. If n components
is much less than the number of training samples, arpack may be more efficient than
the dense eigensolver. Options are:

* auto

* dense

* arpack

Default: False

– tol, float, optional field, convergence tolerance for arpack.
Default: 0 (optimal value will be chosen by arpack)

– max iter, int, optional field, maximum number of iterations for arpack.
Default: None (optimal value will be chosen by arpack)

– <remove zero eig>, boolean, optional field, If True, then all components with
zero eigenvalues are removed, so that the number of components in the output may
be ¡ n components (and sometimes even zero due to numerical instability). When
n components is None, this parameter is ignored and components with zero eigenvalues
are removed regardless.
Default: True
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• Sparse PCA
Finds the set of sparse components that can optimally reconstruct the data. The amount of
sparseness is controllable by the coefficient of the L1 penalty, given by the parameter alpha.
In order to use the Sparse PCA, the user needs to set the sub-node:

<SKLtype>decomposition|SparsePCA</SKLtype>.

In addition to this XML node, several others are available:

– <n components>, integer, optional field, Number of sparse atoms to extract.
Default: None

– <alpha>, float, optional field, Sparsity controlling parameter. Higher values lead to
sparser components.
Default: 1.0

– <ridge alpha>, float, optional field, Amount of ridge shrinkage to apply in order
to improve conditioning when calling the transform method.
Default: 0.01

– <max iter>, float, optional field, maximum number of iterations to perform.
Default: 1000

– <tol>, float, optional field, convergence tolerance.
Default: 1E-08

– <method>, string, optional field, method to use, options are:

* lars: uses the least angle regression method to solve the lasso problem (linear model.lars path)

* cd: uses the coordinate descent method to compute the Lasso solution (linear model.Lasso)

Lars will be faster if the estimated components are sparse.
Default: lars

– <n jobs>, int, optional field, number of parallel runs to run.
Default: 1

– <U init>, array of shape (n samples, n components) , optional field, Initial values
for the loadings for warm restart scenarios
Default: None

– <V init>, array of shape (n components, n features), optional field, Initial values
for the components for warm restart scenarios
Default: None

– verbose, boolean, optional field, Degree of verbosity of the printed output.
Default: False

– random state, int or Random State, optional field, Pseudo number generator state used
for random sampling.
Default: None
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• Mini Batch Sparse PCA
Finds the set of sparse components that can optimally reconstruct the data. The amount of
sparseness is controllable by the coefficient of the L1 penalty, given by the parameter alpha.
In order to use the Mini Batch Sparse PCA, the user needs to set the sub-node:

<SKLtype>decomposition|MiniBatchSparsePCA</SKLtype>.

In addition to this XML node, several others are available:

– <n components>, integer, optional field, Number of sparse atoms to extract.
Default: None

– <alpha>, float, optional field, Sparsity controlling parameter. Higher values lead to
sparser components.
Default: 1.0

– <ridge alpha>, float, optional field, Amount of ridge shrinkage to apply in order
to improve conditioning when calling the transform method.
Default: 0.01

– <n iter>, float, optional field, number of iterations to perform per mini batch.
Default: 100

– <callback>, callable, optional field, callable that gets invoked every five iterations.

Default: None

– <batch size>, int, optional field, the number of features to take in each mini batch.

Default: 3

– <verbose>, boolean, optional field, Degree of verbosity of the printed output.
Default: False

– <shuffle>, boolean, optional field, whether to shuffle the data before splitting it in
batches.
Default: True

– <n jobs>, integer, optional field, Parameters (keyword arguments) and values for
kernel passed as callable object. Ignored by other kernels.
Default: 3

– <metho>, string, optional field, method to use, options are:

* lars: uses the least angle regression method to solve the lasso problem (linear model.lars path),

* cd: uses the coordinate descent method to compute the Lasso solution (linear model.Lasso)

Lars will be faster if the estimated components are sparse.
Default: lars

– <random state>, integer or Random State, optional field, Pseudo number genera-
tor state used for random sampling.
Default: None
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15.5.9.4.2 Truncated singular value decomposition
Dimensionality reduction using truncated SVD (aka LSA). In order to use the Truncated SVD,

the user needs to set the sub-node:

<SKLtype>decomposition|TruncatedSVD</SKLtype>.

In addition to this XML node, several others are available:

• <n components>, integer, optional field, Desired dimensionality of output data. Must be
strictly less than the number of features. The default value is useful for visualisation. For
LSA, a value of 100 is recommended.
Default: 2

• <algorithm>, string, optional field, SVD solver to use:

– Randomized: randomized algorithm

– Arpack: ARPACK wrapper in.

Default: Randomized

• <n iter>, float, optional field, number of iterations andomized SVD solver. Not used by
ARPACK.
Default: 5

• <random state>, int or Random State, optional field, Pseudo number generator state
used for random sampling. If not given, the numpy.random singleton is used.
Default: None

• <tol>, float, optional field, Tolerance for ARPACK. 0 means machine precision. Ignored
by randomized SVD solver.
Default: 0.0

15.5.9.4.3 Fast ICA
A fast algorithm for Independent Component Analysis. In order to use the Fast ICA, the user

needs to set the sub-node:

<SKLtype>decomposition|FastICA</SKLtype>.

In addition to this XML node, several others are available:

• <n components>, integer, optional field, Number of components to use. If none is
passed, all are used.
Default: None
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• <algorithm>, string, optional field, algorithm used in FastICA:

– parallel,

– deflation.

Default: parallel

• <fun>, string or function, optional field, The functional form of the G function used in the
approximation to neg-entropy. Could be either:

– logcosh,

– exp, or

– cube.

One can also provide own function. It should return a tuple containing the value of the
function, and of its derivative, in the point.
Default: logcosh

• <fun args>, dictionary, optional field, Arguments to send to the functional form. If empty
and if fun=’logcosh’, fun args will take value ‘alpha’ : 1.0.
Default: None

• <max iter>, float, optional field, maximum number of iterations during fit.
Default: 200

• <tol>, float, optional field, Tolerance on update at each iteration.
Default: 0.0001

• <w init>, None or an (n components, n components) ndarray, optional field, The mix-
ing matrix to be used to initialize the algorithm.
Default: None

• <randome state>, int or Random State, optional field, Pseudo number generator state
used for random sampling.
Default: None

15.5.9.5 Manifold learning

A manifold is a topological space that resembles a Euclidean space locally at each point. Manifold
learning is an approach to non-linear dimensionality reduction. It assumes that the data of interest
lie on an embedded non-linear manifold within the higher-dimensional space. If this manifold is
of low dimension, data can be visualized in the low-dimensional space. Algorithms for this task
are based on the idea that the dimensionality of many data sets is only artificially high.
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15.5.9.5.1 Isomap
Non-linear dimensionality reduction through Isometric Mapping (Isomap). In order to use the

Isometric Mapping, the user needs to set the sub-node:

<SKLtype>manifold|Isomap</SKLtype>.

In addition to this XML node, several others are available:

• <n neighbors>, integer, optional field, Number of neighbors to consider for each point.
Default: 5

• <n components>, integer, optional field, Number of coordinates to manifold.
Default: 2

• <eigen solver>, string, optional field, eigen solver to use:

– auto: Attempt to choose the most efficient solver for the given problem,

– arpack: Use Arnoldi decomposition to find the eigenvalues and eigenvectors

– dense: Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition

Default: auto

• <tol>, float, optional field, Convergence tolerance passed to arpack or lobpcg. not used if
eigen solver is ‘dense’.
Default: 0.0

• <max iter>, float, optional field, Maximum number of iterations for the arpack solver.
not used if eigen solver == ‘dense’.
Default: None

• <path method>, string, optional field, Method to use in finding shortest path. Could be
either:

– Auto: attempt to choose the best algorithm

– FW: Floyd-Warshall algorithm

– D: Dijkstra algorithm with Fibonacci Heaps

Default: auto

• <neighbors algorithm>, string, optional field, Algorithm to use for nearest neighbors
search, passed to neighbors.NearestNeighbors instance.

– auto,
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– brute

– kd tree

– ball tree

Default: auto

Example:

<Simulation>
...
<Models>

...
<PostProcessor name='PostProcessorName'

subType='DataMining'>
<KDD lib='SciKitLearn'>

<Features>input</Features>
<SKLtype>manifold|Isomap</SKLtype>
<n_neighbors>5</n_neighbors>
<n_components>3</n_components>
<eigen_solver>arpack</eigen_solver>
<neighbors_algorithm>kd_tree</neighbors_algorithm>

</KDD>
</PostProcessor>

...
<Models>
...

<Simulation>

15.5.9.5.2 Locally Linear Embedding
In order to use the Locally Linear Embedding, the user needs to set the sub-node:

<SKLtype>manifold|LocallyLinearEmbedding</SKLtype>.

In addition to this XML node, several others are available:

• <n neighbors>, integer, optional field, Number of neighbors to consider for each point.
Default: 5

• <n components>, integer, optional field, Number of coordinates to manifold.
Default: 2
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• <reg>, float, optional field, regularization constant, multiplies the trace of the local covari-
ance matrix of the distances.
Default: 0.01

• <eigen solver>, string, optional field, eigen solver to use:

– auto: Attempt to choose the most efficient solver for the given problem,

– arpack: use arnoldi iteration in shift-invert mode.

– dense: use standard dense matrix operations for the eigenvalue

Default: auto

• <tol>, float, optional field, Convergence tolerance passed to arpack. not used if eigen solver
is ‘dense’.
Default: 1E-06

• <max iter>, int, optional field, Maximum number of iterations for the arpack solver. not
used if eigen solver == ‘dense’.
Default: 100

• <method>, string, optional field, Method to use. Could be either:

– Standard: use the standard locally linear embedding algorithm

– hessian: use the Hessian eigenmap method

– itsa: use local tangent space alignment algorithm

Default: standard

• <hessian tol>, float, optional field, Tolerance for Hessian eigenmapping method. Only
used if method == ’hessian’
Default: 0.0001

• <modified tol>, float, optional field, Tolerance for modified LLE method. Only used if
method == ’modified’
Default: 0.0001

• <neighbors algorithm>, string, optional field, Algorithm to use for nearest neighbors
search, passed to neighbors.NearestNeighbors instance.

– auto,

– brute

– kd tree
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– ball tree

Default: auto

• <random state>, int or numpy random state, optional field, the generator or seed used
to determine the starting vector for arpack iterations.
Default: None

15.5.9.5.3 Spectral Embedding
Spectral embedding for non-linear dimensionality reduction, it forms an affinity matrix given by

the specified function and applies spectral decomposition to the corresponding graph laplacian.
The resulting transformation is given by the value of the eigenvectors for each data point In order
to use the Spectral Embedding, the user needs to set the sub-node:

<SKLtype>manifold|SpectralEmbedding</SKLtype>.

In addition to this XML node, several others are available:

• <n components>, integer, optional field, the dimension of projected sub-space.
Default: 2

• <eigen solver>, string, optional field, the eigen value decomposition strategy to use:

– none,

– arpack.

– lobpcg,

– amg

Default: none

• <random state>, integer or numpy random state, optional field, A pseudo random num-
ber generator used for the initialization of the lobpcg eigen vectors decomposition when
eigen solver == ‘amg.
Default: None

• <affinity>, string or callable, optional field, How to construct the affinity matrix:

– nearest neighbors : construct affinity matrix by knn graph

– rbf : construct affinity matrix by rbf kernel

– precomputed : interpret X as precomputed affinity matrix
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– callable : use passed in function as affinity the function takes in data matrix (n samples,
n features) and return affinity matrix (n samples, n samples).

Default: nearest neighbor

• <gamma>, float, optional field, Kernel coefficient for rbf kernel.
Default: None

• <n neighbors>, int, optional field, Number of nearest neighbors for nearest neighbors
graph building.
Default: None

15.5.9.5.4 Multi-dimensional Scaling (MDS)

In order to use the Multi Dimensional Scaling, the user needs to set the sub-node:

<SKLtype>manifold|MDS</SKLtype>.

In addition to this XML node, several others are available:

• <metric>, boolean, optional field, compute metric or nonmetric SMACOF (Scaling by
Majorizing a Complicated Function) algorithm
Default: True

• <n components>, integer, optional field, number of dimension in which to immerse the
similarities overridden if initial array is provided.
Default: 2

• <n init>, integer, optional field, Number of time the smacof algorithm will be run with
different initialisation. The final results will be the best output of the n init consecutive runs
in terms of stress.
Default: 4

• <max iter>, integer, optional field, Maximum number of iterations of the SMACOF al-
gorithm for a single run
Default: 300

• <verbose>, integer, optional field, level of verbosity
Default: 0

• <eps>, float, optional field, relative tolerance with respect to stress to declare converge
Default: 1E-06
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• <n jobs>, integer, optional field, The number of jobs to use for the computation. This
works by breaking down the pairwise matrix into n jobs even slices and computing them in
parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all,
which is useful for debugging. For n jobs below -1, (n cpus + 1 + n jobs) are used. Thus for
n jobs = -2, all CPUs but one are used.
Default: 1

• <random state>, <integer or numpy random state, optional field>,
The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults
to the global numpy random number generator.
Default: None

• <dissimilarity>, string, optional field, Which dissimilarity measure to use. Supported
are ‘euclidean’ and ‘precomputed’.
Default: euclidean

15.5.9.6 Scipy

’Scipy’ provides a Hierarchical clustering that performs clustering over PointSet and Histo-
rySet. This algorithm also automatically generates a dendrogram in .pdf format (i.e., dendro-
gram.pdf).

• <SCIPYtype>, string, required field, SCIPY algorithm to be employed.

• <Features>, string, required field, defines the data to be used for training the data mining
algorithm. It can be:

– the name of the variable in the defined dataObject entity

– the location (i.e. input or output). In this case the data mining is applied to all the
variables in the defined space.

• <method>, string, required field, The linkage algorithm to be used
Default: single, complete, weighted, centroids, median, ward.

• <metric>, string, required field, The distance metric to be used
Default: ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’,
‘euclidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘roger-
stanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’.

• <level>, float, required field, Clustering distance level where actual clusters are formed.

• <criterion>, string, required field, The criterion to use in forming flat clusters. This
can be any of the following values:
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– “inconsistent” : If a cluster node and all its descendants have an inconsistent value less
than or equal to ‘t‘ then all its leaf descendants belong to the same flat cluster. When
no non-singleton cluster meets this criterion, every node is assigned to its own cluster.
(Default)

– “distance” : Forms flat clusters so that the original observations in each flat cluster have
no greater a cophenetic distance than t.

– “maxclust” : Finds a minimum threshold “r” so that the cophenetic distance between
any two original observations in the same flat cluster is no more than “r” and no more
than t flat clusters are formed.

– “monocrit” : Forms a flat cluster from a cluster node c with index i whenmonocrit[j] <=
t.

– “maxclust monocrit” : Forms a flat cluster from a non-singleton cluster node “c” when
monocrit[i] <= r for all cluster indices “i” below and including “c”. “r” is minimized
such that no more than “t” flat clusters are formed. monocrit must be monotonic.

• <dendrogram>, boolean, required field, If True the dendrogram is actually created.

• <truncationMode>, string, required field, The dendrogram can be hard to read when
the original observation matrix from which the linkage is derived is large. Truncation is used
to condense the dendrogram. There are several modes:

– “None”: No truncation is performed (Default).

– “lastp”: The last p non-singleton formed in the linkage are the only non-leaf nodes in
the linkage; they correspond to rows Z[n − p − 2 : end] in Z. All other non-singleton
clusters are contracted into leaf nodes.

– “level”/“mtica”: No more than p levels of the dendrogram tree are displayed. This
corresponds to Mathematica behavior.

• <p>, int, required field, The p parameter for truncationMode.

• <leafCounts>, boolean, required field, When True the cardinality non singleton nodes
contracted into a leaf node is indiacted in parenthesis.

• <showContracted>, boolean, required field, When True the heights of non singleton
nodes contracted into a leaf node are plotted as crosses along the link connecting that leaf
node.

• <annotatedAbove>, float, required field, Clustering level above which the branching
level is annotated.

Example:
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<Simulation>
...
<Models>

...
<PostProcessor name="hierarchical" subType="DataMining"

verbosity="quiet">
<KDD lib="Scipy" labelFeature='labels'>
<SCIPYtype>cluster|Hierarchical</SCIPYtype>
<Features>output</Features>
<method>single</method>
<metric>euclidean</metric>
<level>75</level>
<criterion>distance</criterion>
<dendrogram>true</dendrogram>
<truncationMode>lastp</truncationMode>
<p>20</p>
<leafCounts>True</leafCounts>
<showContracted>True</showContracted>
<annotatedAbove>10</annotatedAbove>

</KDD>
</PostProcessor>
...

<Models>
...

<Simulation>

15.5.10 Discrete Risk Measures

This Post-Processor calculates a series of risk importance measures from a PointSet. This calcula-
tion is performed for a set of input parameters given an output target.

The user is required to provide the following information:

• the set of input variables. For each variable the following need to be specified:

– the set of values that imply a reliability value equal to 1 for the input variable

– the set of values that imply a reliability value equal to 0 for the input variable

• the output target variable. For this variable it is needed to specify the values of the output
target variable that defines the desired outcome.
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The following variables are first determined for each input variable i:

• R0 Probability of the outcome of the output target variable (nominal value)

• R+
i Probability of the outcome of the output target variable if reliability of the input variable

is equal to 0

• R−i Probability of the outcome of the output target variable if reliability of the input variable
is equal to 1

Available measures are:

• Risk Achievement Worth (RAW): RAW = R+
i /R0

• Risk Achievement Worth (RRW): RRW = R0/R
−
i

• Fussell-Vesely (FV): FV = (R0 −R−i )/R0

• Birnbaum (B): B = R+
i −R−i

In order to use the RiskMeasureDiscrete PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’RiskMeasureDiscrete’/>.

Several sub-nodes are available:

In the <PostProcessor> input block, the following XML sub-nodes are required, indepen-
dent of the subType specified:

• <measures>, string, required field, desired risk importance measures that have to be com-
puted (RRW, RAW, FV, B)

• <variable>, string, required field, ID of the input variable. This node is provided for
each input variable. This nodes needs to contain also these attributes:

– R0values, float, required field, interval of values (comma separated values) that
implies a reliability value equal to 0 for the input variable

– R1values, float, required field, interval of values (comma separated values) that
implies a reliability value equal to 1 for the input variable

• <target>, string, required field, ID of the output variable. This nodes needs to contain
also the attribute values, string, required field, interval of values of the output target
variable that defines the desired outcome
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Example: This example shows an example where it is desired to calculate all available risk
importance measures for two input variables (i.e., pumpTime and valveTime) given an output target
variable (i.e., Tmax). A value of the input variable pumpTime in the interval [0, 240] implies a
reliability value of the input variable pumpTime equal to 0. A value of the input variable valveTime
in the interval [0, 60] implies a reliability value of the input variable valveTime equal to 0. A value
of the input variables valveTime and pumpTime in the interval [1441, 2880] implies a reliability
value of the input variables equal to 1. The desired outcome of the output variable Tmax occurs in
the interval [2200, 2500].

<Simulation>
...
<Models>

...
<PostProcessor name="riskMeasuresDiscrete"

subType="RiskMeasuresDiscrete">
<measures>B,FV,RAW,RRW</measures>
<variable R0values='0,240'

R1values='1441,2880'>pumpTime</variable>
<variable R0values='0,60'

R1values='1441,2880'>valveTime</variable>
<target values='2200,2500'

>Tmax</target>
</PostProcessor>
...

</Models>
...

</Simulation>

This Post-Processor allows the user to consider also multiple datasets (a data set for each initi-
ating event) and calculate the global risk importance measures. This can be performed by:

• Including all datasets in the step

<Simulation>
...
</Steps>

...
<PostProcess name="PP">

<Input class="DataObjects" type="PointSet"
>outRun1</Input>

<Input class="DataObjects" type="PointSet"
>outRun2</Input>

<Model class="Models" type="PostProcessor"
>riskMeasuresDiscrete</Model>
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<Output class="DataObjects" type="PointSet"
>outPPS</Output>

<Output class="OutStreams" type="Print"
>PrintPPS_dump</Output>

</PostProcess>
</Steps>
...

</Simulation>

• Adding in the Post-processor the frequency of the initiating event associated to each dataset

<Simulation>
...
<Models>

...
<PostProcessor name="riskMeasuresDiscrete"

subType="RiskMeasuresDiscrete">
<measures>FV,RAW</measures>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Astatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Bstatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Cstatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Dstatus</variable>
<target values='0.9,1.1'>outcome</target>
<data freq='0.01'>outRun1</data>
<data freq='0.02'>outRun2</data>

</PostProcessor>
...

</Models>
...

</Simulation>

This post-processor can be made time dependent if a single HistorySet is provided among
the other data objects. The HistorySet contains the temporal profiles of a subset of the input
variables. This temporal profile can be only boolean, i.e., 0 (component offline) or 1 (component
online). Note that the provided history set must contains a single History; multiple Histories are
not allowed. When this post-processor is in a dynamic configuration (i.e., time-dependent), the
user is required to specify an xml node <temporalID> that indicates the ID of the temporal
variable. For each time instant, this post-processor determines the temporal profiles of the desired
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risk importance measures. Thus, in this case, an HistorySet must be chosen as an output data
object. An example is shown below:

<Simulation>
...
<Models>

...
<PostProcessor name="riskMeasuresDiscrete"

subType="RiskMeasuresDiscrete">
<measures>B,FV,RAW,RRW,R0</measures>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Astatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Bstatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Cstatus</variable>
<target values='0.9,1.1'>outcome</target>
<data freq='1.0'>outRun1</data>
<temporalID>time</temporalID>

</PostProcessor>
...

</Models>
...
<Steps>

...
<PostProcess name="PP">

<Input class="DataObjects" type="PointSet"
>outRun1</Input>

<Input class="DataObjects" type="HistorySet"
>timeDepProfiles</Input>

<Model class="Models" type="PostProcessor"
>riskMeasuresDiscrete</Model>

<Output class="DataObjects" type="HistorySet"
>outHS</Output>

<Output class="OutStreams" type="Print"
>PrintHS</Output>

</PostProcess>
...

</Steps>
...

</Simulation>
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15.5.11 HistorySetDelay

This Post-Processor allows history sets to add delayed or lagged variables. It copies a variable,
but with a delay. For example, if there a variable price that is set hourly, than new variable called
price prev hour could be set by using a delay of -1 as seen in the listing below. This can be useful
for training a ROM or other data analysis.

In order to use the HistorySetDelay PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’HistorySetDelay’/>.

Several sub-nodes are available:

In the <PostProcessor> input block, one or more of the following XML sub-nodes are
required:

• <delay>, empty, a delay node with the following required parameters:

– original, string, required field, the variable to start with

– new, string, required field, the new variable to create

– steps, integer, required field, the delay (if negative) or steps into the future (if posi-
tive) to use for the new variable (so -1 gives the previous, 1 gives the next)

– default, float, required field, the value to use for cases where there is no previous
or next value (such as the beginning when a negative delay is used, or the end when the
delay is positive).

<Simulation>
...
<Models>

...
<PostProcessor name="delayPP" subType="HistorySetDelay">

<delay original="price" new="price_prev_hour" steps="-1"
default="0.0"/>

<delay original="price" new="price_prev_day" steps="-24"
default="0.0"/>

<delay original="price" new="price_prev_week" steps="-168"
default="-1.0"/>

</PostProcessor>
</Models>
...
<Steps>
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...
<PostProcess name="delay">

<Input class="DataObjects"
type="HistorySet">samples</Input>

<Model class="Models" type="PostProcessor">delayPP</Model>
<Output class="DataObjects"

type="HistorySet">delayed_samples</Output>
</PostProcess>
...

</Steps>
...
<DataObjects>

<HistorySet name="samples">
<Input>demand</Input>
<Output>price</Output>
<options>
<pivotParameter>hour</pivotParameter>

</options>
</HistorySet>
<HistorySet name="delayed_samples">

<Input>demand</Input>
<Output>price,price_prev_hour,price_prev_day,price_prev_week</Output>
<options>
<pivotParameter>hour</pivotParameter>

</options>
</HistorySet>
...

</DataObjects>
</Simulation>

15.5.12 Interfaced

The Interfaced post-processor is a Post-Processor that allows the user to create its own Post-
Processor. While the External Post-Processor (see Section 15.5.7 allows the user to create case-
dependent Post-Processors, with this new class the user can create new general purpose Post-
Processors.

In order to use the Interfaced PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’Interfaced’/>.
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Several sub-nodes are available:

• <method>, comma separated string, required field, lists the method names of a method
that will be computed (each returning a post-processing value). All available methods need
to be included in the “/raven/framework/PostProcessorFunctions/” folder

Example:

<Simulation>
...
<Models>

...
<PostProcessor name="example"

subType='InterfacedPostProcessor'verbosity='debug'>
<method>testInterfacedPP</method>
<!--Here, the xml nodes required by the chosen method

have to be
included.
-->

</PostProcessor>
...

</Models>
...

</Simulation>

All the Interfaced post-processors need to be contained in the “/raven/framework/PostProces-
sorFunctions/” folder. In fact, once the Interfaced post-processor is defined in the RAVEN input
file, RAVEN search that the method of the post-processor is located in such folder.

The class specified in the Interfaced post-processor has to inherit the PostProcessorInterface-
Base class and the user must specify this set of methods:

• initialize: in this method, the internal parameters of the post-processor are initialized. Manda-
tory variables that needs to be specified are the following:

– self.inputFormat: type of dataObject expected in input

– self.outputFormat: type of dataObject generated in output

• readMoreXML: this method is in charge of reading the PostProcessor xml node, parse it and
fill the PostProcessor internal variables.

• run: this method performs the desired computation of the dataObject.
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from PostProcessorInterfaceBaseClass import PostProcessorInterfaceBase
class testInterfacedPP(PostProcessorInterfaceBase):

def initialize(self)
def readMoreXML(self,xmlNode)
def run(self,inputDic)

15.5.12.1 Data Format

The user is not allowed to modify directly the DataObjects, however the content of the DataObjects
is available in the form of a python dictionary. Both the dictionary give in input and the one
generated in the output of the PostProcessor are structured as follows:

inputDict = {'data':{}, 'metadata':{}}

where:

inputDict['data'] = {'input':{}, 'output':{}}

In the input dictonary, each input variable is listed as a dictionary that contains a numpy array
with its own values as shown below for a simplified example

inputDict['data']['input'] = {'inputVar1': array([ 1.,2.,3.]),
'inputVar2': array([4.,5.,6.])}

Similarly, if the dataObject is a PointSet then the output dictionary is structured as follows:

inputDict['data']['output'] = {'outputVar1': array([ .1,.2,.3]),
'outputVar2':array([.4,.5,.6])}

Howevers, if the dataObject is a HistorySet then the output dictionary is structured as follows:

inputDict['data']['output'] = {'hist1': {}, 'hist2':{}}

where

inputDict['output']['data'][hist1] = {'time': array([ .1,.2,.3]),
'outputVar1':array([ .4,.5,.6])}

inputDict['output']['data'][hist2] = {'time': array([ .1,.2,.3]),
'outputVar1':array([ .14,.15,.16])}
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15.5.12.2 Method: HStoPSOperator

This Post-Processor performs the conversion from HistorySet to PointSet performing a projection
of the output space.

In the <PostProcessor> input block, the following XML sub-nodes are available:

• <pivotParameter>, string, optional field, ID of the temporal variable. Default is “time”.
Note: Used just in case the <pivotValue>-based operation is requested

• <operator>, string, optional field, the operation to perform on the output space:

– min, compute the minimum of each variable along each single history

– max, compute the maximum of each variable along each single history

– average, compute the average of each variable along each single history

– all, join together all of the each variable in the history, and make the pivotParameter
a regular parameter. Unlike the min and max operators, this keeps all the data, just
organized differently. This operator does this by propogating the other input parameters
for each item of the pivotParameter. Table 6 shows an example HistorySet with input
parameter x, pivot parameter t, and output parameter b and then Table 7 shows the
resulting PointSet with input parameters x and t, and output parameter b. Note that
which parameters are input and which are output in the resulting PointSet depends on
the DataObject specification.

Note: This node can be inputted only if <pivotValue> and <row> are not present

• <pivotValue>, float, optional field, the value of the pivotParameter with respect to the
other outputs need to be extracted. Note: This node can be inputted only if <operator>
and <row> are not present

• <pivotStrategy>, string, optional field, The strategy to use for the pivotValue:

– nearest, find the value that is the nearest with respect the <pivotValue>

– floor, find the value that is the nearest with respect to the <pivotValue> but less
then the <pivotValue>

– celing, find the value that is the nearest with respect to the <pivotValue> but greater
then the <pivotValue>

– interpolate, if the exact <pivotValue> can not be found, interpolate using a linear
approach

Note: Valid just in case <pivotValue> is present
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• <row>, int, optional field, the row index at which the outputs need to be extracted. Note: This
node can be inputted only if <operator> and <pivotValue> are not present

This example will show how the XML input block would look like:

<Simulation>
...
<Models>

...
<PostProcessor name="HStoPSperatorRows"

subType="InterfacedPostProcessor">
<method>HStoPSOperator</method>
<row>-1</row>

</PostProcessor>
<PostProcessor name="HStoPSoperatorPivotValues"

subType="InterfacedPostProcessor">
<method>HStoPSOperator</method>
<pivotParameter>time</pivotParameter>
<pivotValue>0.3</pivotValue>

</PostProcessor>
<PostProcessor name="HStoPSoperatorOperatorMax"

subType="InterfacedPostProcessor">
<method>HStoPSOperator</method>
<pivotParameter>time</pivotParameter>
<operator>max</operator>

</PostProcessor>
<PostProcessor name="HStoPSoperatorOperatorMin"

subType="InterfacedPostProcessor">
<method>HStoPSOperator</method>
<pivotParameter>time</pivotParameter>
<operator>min</operator>

</PostProcessor>
<PostProcessor name="HStoPSoperatorOperatorAverage"

subType="InterfacedPostProcessor">
<method>HStoPSOperator</method>
<pivotParameter>time</pivotParameter>
<operator>average</operator>

</PostProcessor>
...

</Models>
...

</Simulation>
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Table 6: Starting HistorySet for operator all

x t b
5.0

1.0 6.0
2.0 7.0

Table 7: Resulting PointSet after operator all

x t b
5.0 1.0 6.0
5.0 2.0 7.0

15.5.12.3 Method: HistorySetSampling

This Post-Processor performs the conversion from HistorySet to HistorySet The conversion is
made so that each history H is re-sampled accordingly to a specific sampling strategy. It can
be used to reduce the amount of space required by the HistorySet.

In the <PostProcessor> input block, the following XML sub-nodes are required, indepen-
dent of the subType specified:

• <samplingType>, string, required field, specifies the type of sampling method to be
used:

– uniform: the set of <numberOfSamples> samples are uniformly distributed along
the time axis

– firstDerivative: the set of <numberOfSamples> samples are distributed along the
time axis in regions with higher first order derivative

– secondDerivative: the set of <numberOfSamples> samples are distributed along
the time axis in regions with higher second order derivative

– filteredFirstDerivative: samples are located where the first derivative is greater than the
specified <tolerance> value (hence, the number of samples can vary from history
to history)

– filteredSecondDerivative: samples are located where the second derivative is greater
than the specified <tolerance> value (hence, the number of samples can vary from
history to history)

• <numberOfSamples>, integer, optional field, number of samples (required only for the
following sampling types: uniform, firstDerivative secondDerivative)

• <pivotParameter>, string, required field, ID of the temporal variable
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• <interpolation>, string, optional field, type of interpolation to be employed for the
history reconstruction (required only for the following sampling types: uniform, firstDeriva-
tive secondDerivative). Valid types of interpolation to specified: linear, nearest, zero, slinear,
quadratic, cubic, intervalAverage

• <tolerance>, string, optional field, tolerance level (required only for the following sam-
pling types: filteredFirstDerivative or filteredSecondDerivative)

15.5.12.4 Method: HistorySetSync

This Post-Processor performs the conversion from HistorySet to HistorySet The conversion is
made so that all histories are synchronized in time. It can be used to allow the histories to be
sampled at the same time instant.

There are two possible synchronization methods, specified through the <syncMethod> node.
If the <syncMethod> is ’grid’, a <numberOfSamples> node is specified, which yields an
equally-spaced grid of time points. The output values for these points will be linearly derived using
nearest sampled time points, and the new HistorySet will contain only the new grid points.

The other methods are used by specifying <syncMethod> as ’all’, ’min’, or ’max’.
For ’all’, the postprocessor will iterate through the existing histories, collect all the time points
used in any of them, and use these as the new grid on which to establish histories, retaining all the
exact original values and interpolating linearly where necessary. In the event of ’min’ or ’max’,
the postprocessor will find the smallest or largest time history, respectively, and use those time
values as nodes to interpolate between.

In the <PostProcessor> input block, the following XML sub-nodes are required, indepen-
dent of the subType specified:

• <pivotParameter>, string, required field, ID of the temporal variable

• <extension>, string, required field, type of extension when the sync process goes outside
the boundaries of the history (zeroed or extended)

• <syncMethod>, string, required field, synchronization strategy to employ (see descrip-
tion above). Options are ’grid’, ’all’, ’max’, ’min’.

• <numberOfSamples>, integer, optional field, required if <syncMethod> is ’grid’,
number of new time samples
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15.5.12.5 Method: HistorySetSnapShot

This Post-Processor performs a conversion from HistorySet to PointSet. The conversion is made
so that each history H is converted to a single point P . There are several methods that can be
employed to choose the single point from the history:

• min: Take a time slice when the <pivotVar> is at its smallest value,

• max: Take a time slice when the <pivotVar> is at its largest value,

• average: Take a time slice when the <pivotVar> is at its time-weighted average value,

• value: Take a time slice when the <pivotVar> first passes its specified value,

• timeSlice: Take a time slice index from the sampled time instance space.

To demonstrate the timeSlice, assume that each history H is a dict of n output variables x1 =
[...], xn = [...], then the resulting point P is at time instant index t: P = [x1[t], ..., xn[t]].

Choosing one the these methods for the <type> node will take a time slice for all the variables
in the output space based on the provided parameters. Alternatively, a ’mixed’ type can be used,
in which each output variable can use a different time slice parameter. In other words, you can take
the max of one variable while taking the minimum of another, etc.

In the <PostProcessor> input block, the following XML sub-nodes are required, indepen-
dent of the subType specified:

• <type>, string, required field, type of operation: ’min’, ’max’, ’average’, ’value’,
’timeSlice’, or ’mixed’

• <extension>, string, required field, type of extension when the sync process goes outside
the boundaries of the history (zeroed or extended)

• <pivotParameter>, string, optional field, name of the temporal variable. Required for
the ’average’ and ’timeSlice’ methods.

If a ’timeSlice’ type is in use, the following nodes also are required:

• <timeInstant>, integer, required field, required and only used in the ’timeSlice’
type. Location of the time slice (integer index)

• <numberOfSamples>, integer, required field, number of samples
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If instead a ’min’, ’max’, ’average’, or ’value’ is used, the following nodes are also
required:

• <pivotVar>, string, required field, Name of the chosen indexing variable (the variable
whose min, max, average, or value is used to determine the time slice)

• <pivotVal>, float, optional field, required for ’value’ type, the value for the chosen
variable

Lastly, if a ’mixed’ approach is used, the following nodes apply:

• <max>, string, optional field, the names of variables whose output should be their own
maximum value within the history.

• <min>, string, optional field, the names of variables whose output should be their own
minimum value within the history.

• <average>, string, optional field, the names of variables whose output should be their
own average value within the history. Note that a <pivotParameter> node is required
to perform averages.

• <value>, string, optional field, the names of variables whose output should be taken at a
time slice determined by another variable. As with the non-mixed ’value’ type, the first
time the pivotVar crosses the specified pivotVal will be the time slice taken. This
node requires two attributes, if used:

– pivotVar, string, required field, the name of the variable on which the time slice
will be performed. That is, if we want the value of y when t = 0.245, this attribute
would be ’t’.

– pivotVal, float, required field, the value of the pivotVar on which the time slice
will be performed. That is, if we want the value of y when t = 0.245, this attribute
would be ’0.245’.

Note that all the outputs of the <DataObject> output of this postprocessor must be listed
under one of the ’mixed’ node types in order for values to be returned.

Example (mixed): This example will output the average value of x for x, the value of y at
time= 0.245 for y, and the value of z at x = 4.0 for z.

<Simulation>
...
<Models>

...

442



<PostProcessor name="mampp2"
subType="InterfacedPostProcessor">
<method>HistorySetSnapShot</method>
<type>mixed</type>
<average>x</average>
<value pivotVar="time" pivotVal="0.245">y</value>
<value pivotVar="x" pivotVal="4.0">z</value>
<pivotParameter>time</pivotParameter>
<extension>zeroed</extension>

</PostProcessor>
...

</Models>
...

</Simulation>

15.5.12.6 Method: HS2PS

This Post-Processor performs a conversion from HistorySet to PointSet. The conversion is made
so that each history H is converted to a single point P . Assume that each history H is a dict of n
output variables x1 = [...], xn = [...], then the resulting point P is P = concat(x1, ..., xn). Note: it
is here assumed that all histories have been sync so that they have the same length, start point and
end point. If you are not sure, do a pre-processing the the original history set.

In the <PostProcessor> input block, the following XML sub-nodes are required, indepen-
dent of the subType specified (min, max, avg and value case):

• <pivotParameter>, string, optional field, ID of the temporal variable (only for avg)

15.5.12.7 Method: TypicalHistoryFromHistorySet

This Post-Processor performs a simplified procedure of [7] to form a “typical” time series from
multiple time series. The input should be a HistorySet, with each history in the HistorySet syn-
chronized. For HistorySet that is not synchronized, use Post-Processor method HistorySetSync to
synchronize the data before running this method.

Each history in input HistorySet is first converted to multiple histories each has maximum
time specified in <outputLen> (see below). Each converted history Hi is divided into a set of
subsequences {Hj

i }, and the division is guided by the <subseqLen> node specified in the input
XML. The value of <subseqLen> should be a list of positive numbers that specify the length
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of each subsequence. If the number of subsequence for each history is more than the number of
values given in <subseqLen>, the values in <subseqLen> would be reused.

For each variable x, the method first computes the empirical CDF (cumulative density function)
by using all the data values of x in the HistorySet. This CDF is termed as long-term CDF for x.
Then for each subsequence Hj

i , the method computes the empirical CDF by using all the data
values of x in Hj

i . This CDF is termed as subsequential CDF. For the first interval window (i.e.,
j = 1), the method computes the Finkelstein-Schafer (FS) statistics [8] between the long term
CDF and the subsequential CDF of H1

i for each i. The FS statistics is defined as following.

FS =
∑
x

FSx

FSx =
1

N

N∑
n=1

δn

where N is the number of value reading in the empirical CDF and δn is the absolute difference
between the long term CDF and the subsequential CDF at value xn. The subsequence H1

i with
minimal FS statistics will be selected as the typical subsequence for the interval window j = 1.
Such process repeats for j = 2, 3, . . . until all subsequences have been processed. Then all the
typical subsequences will be concatenated to form a complete history.

In the <PostProcessor> input block, the following XML sub-nodes are required, indepen-
dent of the subType specified:

• <pivotParameter>, string, optional field, ID of the temporal variable
Default: Time

• <subseqLen>, integers, required field, length of the divided subsequence (see above)

• <outputLen>, integer, optional field, maximum value of the temporal variable for the
generated typical history
Default: Maximum value of the variable with name of <pivotParameter>

For example, consider history of data collected over three years in one-second increments,
where the user wants a single typical year extracted from the data. The user wants this data con-
structed by combining twelve equal typical month segments. In this case, the parameter <outputLen>
should be 31536000 (the number of seconds in a year), while the parameter <subseqLen>
should be 2592000 (the number of seconds in a month). Using a value for <subseqLen> that
is either much, much smaller than <outputLen> or of equal size to <outputLen> might have
unexpected results. In general, we recommend using a <subseqLen> that is roughly an order of
magnitude smaller than <outputLen>.
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15.5.12.8 Method: dataObjectLabelFilter

This Post-Processor allows to filter the portion of a dataObject, either PointSet or HistorySet, with
a given clustering label. A clustering algorithm associates a unique cluster label to each element
of the dataObject (PointSet or HistorySet). This cluster label is a natural number ranging from
0 (or 1 depending on the algorithm) to N where N is the number of obtained clusters. Recall
that some clustering algorithms (e.g., K-Means) receive N as input while others (e.g., Mean-Shift)
determine N after clustering has been performed. Thus, this Post-Processor is naturally employed
after a data-mining clustering techniques has been performed on a dataObject so that each clusters
can be analyzed separately.

In the <PostProcessor> input block, the following XML sub-nodes are required, indepen-
dently of the subType specified:

• <label>, string, required field, name of the clustering label

• <clusterIDs>, integers, required field, ID of the selected clusters. Note that more than
one ID can be provided as input

15.5.13 ParetoFrontier

The ParetoFrontier post-processor is designed to identify the points lying on the Pareto Frontier
in a multi-dimensional trade-space. This post-processor receives as input a DataObject (a PointSet
only) which contains all data points in the trade-space space and it returns the subset of points lying
in the Pareto Frontier as a PointSet.

It is here assumed that each data point of the input PointSet is a realization of the system under
consideration for a specific configuration to which corresponds several objective variables (e.g.,
cost and value).

In order to use the ParetoFrontier PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’ParetoFrontier’/>.

Several sub-nodes are available:

• <objective>,string, required parameter, ID of the objective variable that represents a
dimension of the trade-space space. The <costID> requires one identifying attribute:

– goal, string, required field, Goal of the objective variable characteristic: minimzation
(min) or maximization (max)
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– upperLimit, string, optional field, Desired upper limit of the objective variable for
the points in the Pareto frontier

– lowerLimit, string, optional field, Desired lower limit of the objective variable for
the points in the Pareto frontier

The following is an example where a set of realizations (the “candidates” PointSet) has been
generated by changing two parameters (var1 and var2) which produced two output variables: cost
(which it is desired to be minimized) and value (which it is desired to be maximized). The
ParetoFrontier post-processor takes the “candidates” PointSet and populates a Point similar in
structure (the “paretoPoints” PointSet).

Example:

Listing 1: ParetoFrontier input example (no expand).
<Models>

<PostProcessor name="paretoPP" subType="ParetoFrontier">
<objective goal='min' upperLimit='0.5'>cost</objective>
<objective goal='max' lowerLimit='0.5'>value</objective>

</PostProcessor>
</Models>

<Steps>
<PostProcess name="PP">

<Input class="DataObjects" type="PointSet"
>candidates</Input>

<Model class="Models" type="PostProcessor"
>paretoPP</Model>

<Output class="DataObjects" type="PointSet"
>paretoPoints</Output>

</PostProcess>
</Steps>

<DataObjects>
<PointSet name="candidates">

<Input>var1,var2</Input>
<Output>cost,value</Output>

</PointSet>
<PointSet name="paretoPoints">

<Input>var1,var2</Input>
<Output>cost,value</Output>

</PointSet>
</DataObjects>
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Note: it is possible to specify both upper and lower limits for each objective variable. When
one or both of these limits are specified, then the pareto frontier is filtered such that all pareto
frontier points that satisfy those limits are preserved.

15.5.14 MCSImporter

The MCSImporter post-processor has been designed to import Minimal Cut Sets (MCSs) into
RAVEN. This post-processor reads a csv file which contain the list of MCSs and it save this list as
a DataObject (i.e., a PointSet). The csv file is composed by three columns; the first contains the ID
number of the MCS, the second one contains the MCS probability value, the third one lists all the
Basic Events contained in the MCS. An example of csv file is shown in Table 8.

Table 8: Example of csv file which contains four MCSs.

ID, Prob, MCS,
1., 1.8E-2, D
2., 4.0E-3, B
3., 3.0E-4, A,C
4., 2.1E-5, E,C

The PointSet is structured to include all Basic Event, the MCS ID, the MCS probability, and
the outcome of such MCS (always set to 1). MCS ID and MCS probability are copied directly
from the csv file. For each MCS, the Basic Events can have two possible values:

• 0: Basic Event is not included in the MCS

• 1: Basic Event is included in the MCS

The PointSet generated from the csv file of Table 8 is shown in Table 9.

Table 9: PointSet generated by RAVEN for the list of MCSs shown in Table 8.

A B C D E MCS ID probability out
0 0 0 1 0 1 1.8E-2 1
0 1 0 0 0 2 4.0E-3 1
1 0 1 0 0 3 3.0E-4 1
0 0 1 0 1 4 4.0E-3 1

In order to use the MCSImporter PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’MCSImporter’/>.
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Several sub-nodes are available:

• <expand>,bool, required parameter, expand the set of Basic Events by including all PRA
Basic Events and not only the once listed in the MCSs

• <BElistColumn>,string, optional parameter, if expand is set to True, then this node
contains the column of the csv file which contains all the PRA Basic Events

Example:

Listing 2: MCS Importer input example (no expand).
<Files>

<Input name="MCSlistFile" type="MCSlist">MCSlist.csv</Input>
</Files>

<Models>
<PostProcessor name="MCSImporter" subType="MCSImporter">

<expand>False</expand>
</PostProcessor>

</Models>

<Steps>
<PostProcess name="import">

<Input class="Files" type="MCSlist"
>MCSlistFile</Input>

<Model class="Models" type="PostProcessor"
>MCSImporter</Model>

<Output class="DataObjects" type="PointSet"
>MCS_PS</Output>

</PostProcess>
</Steps>

<DataObjects>
<PointSet name="MCS_PS">

<Input>A,B,C,D,E</Input>
<Output>MCS_ID,probability,out</Output>

</PointSet>
</DataObjects>

Example:

Listing 3: MCS Importer input example (expanded).
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<Files>
<Input name="MCSlistFile" type="MCSlist">MCSlist.csv</Input>
<Input name="BElistFile" type="BElist" >BElist.csv</Input>

</Files>

<Models>
<PostProcessor name="MCSImporter" subType="MCSImporter">

<expand>False</expand>
</PostProcessor>

</Models>

<Steps>
<PostProcess name="import">

<Input class="Files" type="MCSlist"
>MCSlistFile</Input>

<Input class="Files" type="BElist"
>BElistFile</Input>

<Model class="Models" type="PostProcessor"
>MCSimporter</Model>

<Output class="DataObjects" type="PointSet"
>MCS_PS</Output>

</PostProcess>
</Steps>

<DataObjects>
<PointSet name="MCS_PS">

<Input>A,B,C,D,E,F,G</Input>
<Output>MCS_ID,probability,out</Output>

</PointSet>
</DataObjects>

15.5.15 ETImporter

The ETImporter post-processor has been designed to import Event-Tree (ET) object into RAVEN.
Since several ET file formats are available, as of now only the OpenPSA format (see https://open-
psa.github.io/joomla1.5/index.php.html) is supported. As an example, the OpenPSA format ET is
shown below:

Listing 4: ET in OpenPSA format.
<define-event-tree name="eventTree">

<define-functional-event name="ACC"/>
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<define-functional-event name="LPI"/>
<define-functional-event name="LPR"/>
<define-sequence name="1"/>
<define-sequence name="2"/>
<define-sequence name="3"/>
<define-sequence name="4"/>
<initial-state>

<fork functional-event="ACC">
<path state="0">

<fork functional-event="LPI">
<path state="0">

<fork functional-event="LPR">
<path state="0">

<sequence name="1"/>
</path>
<path state="+1">

<sequence name="2"/>
</path>

</fork>
</path>
<path state="+1">

<sequence name="3"/>
</path>

</fork>
</path>
<path state="+1">

<sequence name="4"/>
</path>

</fork>
</initial-state>

</define-event-tree>

This is performed by saving the structure of the ET (from file) as a PointSet (only PointSet
are allowed), since an ET is a static Boolean logic structure. Each realization in the PointSet
represents a unique accident sequence of the ET, and the PointSet is structured as follows:

• Input variables of the PointSet are the branching conditions of the ET. The value of each
input variable can be:

– 0: event did occur (typically upper branch)

– 1: event did not occur (typically lower branch)

– -1: event is not queried (no branching occured)
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• Output variables of the PointSet are the ID of each branch of the ET (i.e., positive integers
greater than 0)

Note: that the 0 or 1 values are specified in the <path state="0"> or <path state="1">
nodes in the ET OpenPSA file.

Provided this definition, the ET described in Listing 4 will be converted to PointSet that is
characterized by the following variables:

• Input variables: statusACC, statusLPI, statusLPR

• Output variable: sequence

and the corresponding PointSet if the <expand> node is set to False is shown in Table 10. If
<expand> set to True, the corresponding PointSet is shown in Table 11.

Table 10: PointSet generated by RAVEN by employing the ET Importer Post-Processor with
<expand> set to False for the ET of Listing 4.

ACC LPI LPR sequence
0. 0. 0. 1.
0. 0. 1. 2.
0. 1. -1. 3.
1. -1. -1. 4.

Table 11: PointSet generated by RAVEN by employing the ET Importer Post-Processor with
<expand> set to True for the ET of Listing 4.

ACC LPI LPR sequence
0. 0. 0. 1.
0. 0. 1. 2.
0. 1. 0. 3.
0. 1. 1. 3.
1. 0. 0. 4.
1. 0. 1. 4.
1. 1. 0. 4.
1. 1. 1. 4.

The ETImporter PP supports also:

• links to sub-trees Note: If the ET is split in two or more ETs (and thus one file for each ET),
then it is only required to list all files in the Step. RAVEN automatically detect links among
ETs and merge all of them into a single PointSet.
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• by-pass branches

• symbolic definition of outcomes: typically outcomes are defined as either 0 (upper branch)
or 1 (lower branch). If instead the ET uses the success/failure labels, then they are converted
into 0/1 labels Note: If the branching condition is not binary or success/failure, then the ET
Importer Post-Processor just follows the numerical value of the <state> attribute of the
<<path>> node in the ET OpenPSA file.

• symbolic/numerical definition of sequences: if the ET contains a symbolic sequence then
a .xml file is generated. This file contains the mapping between the sequences defined in
the ET and the numerical IDs created by RAVEN. The file name is the concatenation of the
ET name and ” mapping”. As an example the file ”eventTree mapping.xml” generated by
RAVEN:

<map Tree="eventTree">
<sequence ID="0">seq_1</sequence>
<sequence ID="1">seq_2</sequence>
<sequence ID="2">seq_3</sequence>
<sequence ID="3">seq_4</sequence>

</map>

contains the mapping of four sequences defined in the ET (seq 1,seq 2,seq 3,seq 4) with the
IDs generated by RAVEN (0,1,2,3). Note that if the sequences defined in the ET are both
numerical and symbolic then they are all mapped.

• The ET can contain a branch that is defined as a separate block in the <define-branch>
node and it is replicated in the ET; in such case RAVEN automatically replicate such branch
when generating the PointSet.

The <collect-formula> are not considered since this node is used to connect the Boolean
formulae generated by the Fault-Trees to the branch (i.e., fork) point.

In order to use the ETImporter PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’ETImporter’/>.

Several sub-nodes are available:

• <fileFormat>, string, required field, specifies the format of the file that contains the ET
structure (supported format: OpenPSA).

• <expand>,bool, required parameter, expand the ET branching conditions for all branches
even if they are not queried
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Example:

Listing 5: ET Importer input example.
<Files>

<Input name="eventTreeTest" type="">eventTree.xml</Input>
</Files>

<Models>
...
<PostProcessor name="ETimporter" subType="ETImporter">

<fileFormat>OpenPSA</fileFormat>
<expand>False</expand>

</PostProcessor>
...

</Models>

<Steps>
...
<PostProcess name="import">

<Input class="Files" type=""
>eventTreeTest</Input>

<Model class="Models" type="PostProcessor"
>ETimporter</Model>

<Output class="DataObjects" type="PointSet"
>ET_PS</Output>

</PostProcess>
...

</Steps>

<DataObjects>
...
<PointSet name="ET_PS">

<Input>ACC,LPI,LPR</Input>
<Output>sequence</Output>

</PointSet>
...

</DataObjects>
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15.5.16 FTImporter

The FTImporter post-processor has been designed to import Fault-Tree (FT) object into RAVEN.
Since several FT file formats are available, as of now only the OpenPSA format (see https://open-
psa.github.io/joomla1.5/index.php.html) is supported. As an example, the FT in OpenPSA format
is shown in Listing 6.

Listing 6: FT in OpenPSA format.
<opsa-mef>

<define-fault-tree name="FT">
<define-gate name="TOP">

<or>
<gate name="G1"/>
<gate name="G2"/>
<gate name="G3"/>

</or>
</define-gate>
<define-component name="A">

<define-gate name="G1">
<and>

<basic-event name="BE1"/>
<basic-event name="BE2"/>

</and>
</define-gate>
<define-gate name="G2">

<and>
<basic-event name="BE1"/>
<basic-event name="BE3"/>

</and>
</define-gate>
<define-basic-event name="BE1">

<float value="1.2e-3"/>
</define-basic-event>
<define-component name="B">

<define-basic-event name="BE2">
<float value="2.4e-3"/>

</define-basic-event>
<define-basic-event name="BE3">

<float value="5.2e-3"/>
</define-basic-event>

</define-component>
</define-component>
<define-component name="C">
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<define-gate name="G3">
<and>

<basic-event name="BE1"/>
<basic-event name="BE4"/>

</and>
</define-gate>
<define-basic-event name="BE4">

<float value="1.6e-3"/>
</define-basic-event>

</define-component>
</define-fault-tree>

</opsa-mef>

This is performed by saving the structure of the FT (from file) as a PointSet (only PointSet are
allowed).

Each Point in the PointSet represents a unique combination of the basic events. The PointSet
is structured as follows: input variables are the basic events, output variable is the top event of the
FT. The value for each input and output variable can have the following values:

• 0: False

• 1: True

Provided this definition, the FT model of Listing 6 can be converted to PointSet that is charac-
terized by these variables:

• Input variables: BE1, BE2, BE3, BE4

• Output variable: out

and it is structured is shown in Table 12.

In order to use the FTImporter PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’FTImporter’/>.

Several sub-nodes are available:

• <fileFormat>, string, required field, specifies the format of the file that contains the FT
structure (supported format: OpenPSA).
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Table 12: PointSet generated by RAVEN by employing the FT Importer Post-Processor for the FT
of Listing 6.

BE1 BE2 BE3 BE4 TOP
0. 0. 0. 0. 0.
0. 0. 0. 1. 0.
0. 0. 1. 0. 0.
0. 0. 1. 1. 0.
0. 1. 0. 0. 0.
0. 1. 0. 1. 0.
0. 1. 1. 0. 0.
0. 1. 1. 1. 0.
1. 0. 0. 0. 0.
1. 0. 0. 1. 1.
1. 0. 1. 0. 1.
1. 0. 1. 1. 1.
1. 1. 0. 0. 1.
1. 1. 0. 1. 1.
1. 1. 1. 0. 1.
1. 1. 1. 1. 1.

• <topEventID>,string, required parameter, the name of the top event of the FT

The example of FTImporter PostProcessor is shown in Listing 7

Listing 7: FT Importer input example.
<Files>

<Input name="faultTreeTest"
type="">FTimporter_not.xml</Input>

</Files>

<Models>
...
<PostProcessor name="FTimporter" subType="FTImporter">

<fileFormat>OpenPSA</fileFormat>
<topEventID>TOP</topEventID>

</PostProcessor>
...

</Models>

<Steps>
...
<PostProcess name="import">
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<Input class="Files" type=""
>faultTreeTest</Input>

<Model class="Models" type="PostProcessor"
>FTimporter</Model>

<Output class="DataObjects" type="PointSet"
>FT_PS</Output>

</PostProcess>
...

</Steps>

<DataObjects>
...
<PointSet name="FT_PS">

<Input>BE1,BE2,BE3,BE4</Input>
<Output>TOP</Output>

</PointSet>
...

</DataObjects>

Important notes and capabilities:

• If the FT is split in two or more FTs (and thus one file for each FT), then it is only required
to list all files in the Step. RAVEN automatically detect links among FTs and merge all of
them into a single PointSet.

• Allowed gates: AND, OR, NOT, ATLEAST, CARDINALITY, IFF, imply, NAND, NOR,
XOR

• If an house-event is defined in the FT:

Listing 8: FT Importer input example: house-event.
<opsa-mef>

<define-fault-tree name="FT">
<define-gate name="TOP">

<or>
<basic-event name="BE1"/>
<basic-event name="BE2"/>
<house-event name="HE1"/>

</or>
</define-gate>
<define-house-event name="HE1">

<constant value="true"/>
</define-house-event>
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</define-fault-tree>
</opsa-mef>

then the HE1 is not part of the PointSet (value is fixed)

15.5.17 Metric

The Metric post-processor is specifically used to calculate the distance values among points from
PointSets and histories from HistorySets, while the Metrics block (See Chapter 17) allows the user
to specify the similarity/dissimilarity metrics to be used in this post-processor. Both PointSet and
HistorySet can be accepted by this post-processor. If the name of given variable is unique, it can be
used directly, otherwise the variable can be specified withDataObjectName|InputOrOutput|V ariableName
like other places in RAVEN. Some of the Metrics also accept distributions to calculate the distance
against. These are specified by using the name of the distribution. In order to use the Metric PP,
the user needs to set the subType of a <PostProcessor> node:

<PostProcessor name=’ppName’ subType=’Metric’/>.

Several sub-nodes are available:

• <Features>, comma separated string, required field, specifies the names of the features.
This xml-node accepts the following attribute:

– type, required string attribute, the type of provided features. Currently only accept
‘variable’.

• <Targets>, comma separated string, required field, contains a comma separated list of
the targets. Note: Each target is paired with a feature listed in xml node <Features>. In
this case, the number of targets should be equal to the number of features. This xml-node
accepts the following attribute:

– type, required string attribute, the type of provided features. Currently only accept
‘variable’.

• <multiOutput>, optional string attribute, only used when HistorySet is used as in-
put. Defines aggregating of time-dependent metrics’ calculations. Available options include:
mean, max, min, raw values over the time. For example, when ‘mean’ is used, the met-
rics’ calculations will be averaged over the time. When ‘raw values’ is used, the full set of
metrics’ calculations will be dumped.
Default: raw values

• <weight>, comma separated floats, optional field, when ‘mean’ is provided for <multiOutput>,
the user can specify the weights that can be used for the average calculation of all outputs.
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• <pivotParameter>, optional string attribute, only used when HistorySet is used as
input. The pivotParameter for given metrics’ calculations.
Default: time

• <Metric>, string, required field, specifies the Metric name that is defined via Metrics
entity. In this xml-node, the following xml attributes need to be specified:

– class, required string attribute, the class of this metric (e.g. Metrics)

– type, required string attribute, the sub-type of this Metric (e.g. SKL, Minkowski)

Example:

<Simulation>
...
<Models>

...
<PostProcessor name="pp1" subType="Metric">

<Features type="variable">ans</Features>
<Targets type="variable">ans2</Targets>
<Metric class="Metrics" type="SKL">euclidean</Metric>
<Metric class="Metrics" type="SKL">cosine</Metric>
<Metric class="Metrics" type="SKL">manhattan</Metric>
<Metric class="Metrics"

type="ScipyMetric">braycurtis</Metric>
<Metric class="Metrics"

type="ScipyMetric">canberra</Metric>
<Metric class="Metrics"

type="ScipyMetric">correlation</Metric>
<Metric class="Metrics"

type="ScipyMetric">minkowski</Metric>
</PostProcessor>
...

</Models>
...
</Simulation>

In order to access the results from this post-processor, RAVEN will define the variables as
“MetricName” + “ ” + “TargetVariableName” + “ ” + “FeatureVariableName” to store the calcu-
lation results, and these variables are also accessible by the users through RAVEN entities DataOb-
jects and OutStreams. Note: We will replace “—” in “TargetVariableName” and “FeatureVari-
ableName” with “ ”. In previous example, variables such as euclidean ans2 ans, cosine ans2 ans,
poly ans2 ans are accessible by the users.
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15.5.18 CrossValidation

The CrossValidation post-processor is specifically used to evaluate estimator (i.e. ROMs) perfor-
mance. Cross-validation is a statistical method of evaluating and comparing learning algorithms
by dividing data into two portions: one used to ‘train’ a surrogate model and the other used to
validate the model, based on specific scoring metrics. In typical cross-validation, the training and
validation sets must crossover in successive rounds such that each data point has a chance of being
validated against the various sets. The basic form of cross-validation is k-fold cross-validation.
Other forms of cross-validation are special cases of k-fold or involve repeated rounds of k-fold
cross-validation. Note: It is important to notice that this post-processor currently can only accept
PointSet data object. In order to use the CrossValidation PP, the user needs to set the subType
of a <PostProcessor> node:

<PostProcessor name=’ppName’ subType=’CrossValidation’/>.

Several sub-nodes are available:

• <SciKitLearn>, string, required field, the subnodes specifies the necessary information
for the algorithm to be used in the post-processor. ‘SciKitLearn’ is based on algorithms in
SciKit-Learn library, and currently it performs cross-validation over PointSet only.

• <Metric>, string, required field, specifies the Metric name that is defined via Metrics
entity. In this xml-node, the following xml attributes need to be specified:

– class, required string attribute, the class of this metric (e.g. Metrics)

– type, required string attribute, the sub-type of this Metric (e.g. SKL, Minkowski)

Note: Currently, cross-validation post-processor only accepts <SKL>metrics with <metricType>
’mean absolute error’, ’explained variance score’, ’r2 score’, ’mean squared error’,
and ’median absolute error’.

Example:

<Simulation>
...
<Files>

<Input name="output_cv" type="">output_cv.xml</Input>
<Input name="output_cv.csv" type="">output_cv.csv</Input>

</Files>
<Models>

...
<ROM name="surrogate" subType="SciKitLearn">

<SKLtype>linear_model|LinearRegression</SKLtype>
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<Features>x1,x2</Features>
<Target>ans</Target>
<fit_intercept>True</fit_intercept>
<normalize>True</normalize>

</ROM>
<PostProcessor name="pp1" subType="CrossValidation">

<SciKitLearn>
<SKLtype>KFold</SKLtype>
<n_splits>3</n_splits>
<shuffle>False</shuffle>

</SciKitLearn>
<Metric class="Metrics" type="SKL">m1</Metric>

</PostProcessor>
...

</Models>
<Metrics>

<SKL name="m1">
<metricType>mean_absolute_error</metricType>

</SKL>
</Metrics>
<Steps>

<PostProcess name="PP1">
<Input class="DataObjects"

type="PointSet">outputDataMC</Input>
<Input class="Models" type="ROM">surrogate</Input>
<Model class="Models" type="PostProcessor">pp1</Model>
<Output class="Files" type="">output_cv</Output>
<Output class="Files" type="">output_cv.csv</Output>

</PostProcess>
</Steps>
...
</Simulation>

In order to access the results from this post-processor, RAVEN will define the variables as “cv”
+ “ ” + “MetricName” + “ ” + “ROMTargetVariable” to store the calculation results, and these
variables are also accessible by the users through RAVEN entities DataObjects and OutStreams.
In previous example, variable cv m1 ans are accessible by the users.
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15.5.18.1 SciKitLearn

The algorithm for cross-validation is chosen by the subnode <SKLtype> under the parent node
<SciKitLearn>. In addition, a special subnode <average> can be used to obtain the average
cross validation results.

• <SKLtype>, string, required field, contains a string that represents the cross-validation
algorithm to be used. As mentioned, its format is:

<SKLtype>algorithm</SKLtype>.

• <average>, boolean, optional field, if ‘True‘, dump the average cross validation results
into the output files.

Based on the <SKLtype> several different algorithms are available. In the following para-
graphs a brief explanation and the input requirements are reported for each of them.

15.5.18.2 K-fold

KFold divides all the samples in k groups of samples, called folds (if k = n, this is equivalent to
the Leave One Out strategy), of equal sizes (if possible). The prediction function is learned using
k − 1 folds, and fold left out is used for test. In order to use this algorithm, the user needs to set
the subnode: <SKLtype>KFold</SKLtype>. In addition to this XML node, several others are
available:

• <n splits>, integer, optional field, number of folds, must be at least 2.
Default: 3

• <shuffle>, boolean, optional field, whether to shuffle the data before splitting into batches.

• <random state>, integer, optional field, when shuffle=True, pseudo-random number
generator state used for shuffling. If not present, use default numpy RNG for shuffling.

15.5.18.3 Stratified k-fold

StratifiedKFold is a variation of k-fold which returns stratified folds: each set contains approxi-
mately the same percentage of samples of each target class as the complete set. In order to use this
algorithm, the user needs to set the subnode:

<SKLtype>StratifiedKFold</SKLtype>.

In addition to this XML node, several others are available:
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• <labels>, list of integers, (n samples), required field, contains a label for each sample.

• <n splits>, integer, optional field, number of folds, must be at least 2.
Default: 3

• <shuffle>, boolean, optional field, whether to shuffle the data before splitting into batches.

• <random state>, integer, optional field, when shuffle=True, pseudo-random number
generator state used for shuffling. If not present, use default numpy RNG for shuffling.

15.5.18.4 Label k-fold

LabelKFold is a variation of k-fold which ensures that the same label is not in both testing and
training sets. This is necessary for example if you obtained data from different subjects and you
want to avoid over-fitting (i.e., learning person specific features) by testing and training on different
subjects. In order to use this algorithm, the user needs to set the subnode:

<SKLtype>LabelKFold</SKLtype>.

In addition to this XML node, several others are available:

• <labels>, list of integers with length (n samples, ), required field, contains a label for
each sample. The folds are built so that the same label does not appear in two different folds.

• <n splits>, integer, optional field, number of folds, must be at least 2.
Default: 3

15.5.18.5 Leave-One-Out - LOO

LeaveOneOut (or LOO) is a simple cross-validation. Each learning set is created by taking all the
samples except one, the test set being the sample left out. Thus, for n samples, we have n different
training sets and n different tests set. This is cross-validation procedure does not waste much data
as only one sample is removed from the training set. In order to use this algorithm, the user needs
to set the subnode:

<SKLtype>LeaveOneOut</SKLtype>.

15.5.18.6 Leave-P-Out - LPO

LeavePOut is very similar to LeaveOneOut as it creates all the possible training/test sets by
removing p samples from the complete set. For n samples, this produces (np ) train-test pairs. Unlike
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LeaveOneOut and KFold, the test sets will overlap for p > 1. In order to use this algorithm, the
user needs to set the subnode:

<SKLtype>LeavePOut</SKLtype>.

In addition to this XML node, several others are available:

• <p>, integer, required field, size of the test sets

15.5.18.7 Leave-One-Label-Out - LOLO

LeaveOneLabelOut (LOLO) is a cross-validation scheme which holds out the samples according
to a third-party provided array of integer labels. This label information can be used to encode
arbitrary domain specific pre-defined cross-validation folds. Each training set is thus constituted
by all samples except the ones related to a specific label. In order to use this algorithm, the user
needs to set the subnode:

<SKLtype>LeaveOneLabelOut</SKLtype>.

In addition to this XML node, several others are available:

• <labels>, list of integers, (n samples,), required field, arbitrary domain-specific stratifi-
catioin of the data to be used to draw the splits.

15.5.18.8 Leave-P-Label-Out

LeavePLabelOut is imilar as Leave-One-Label-Out, but removes samples related to P labels for
each training/test set. In order to use this algorithm, the user needs to set the subnode:

<SKLtype>LeavePLabelOut</SKLtype>.

In addition to this XML node, several others are available:

• <labels>, list of integers, (n samples,), required field, arbitrary domain-specific stratifi-
catioin of the data to be used to draw the splits.

• <n groups>, integer, optional field, number of samples to leave out in the test split.
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15.5.18.9 ShuffleSplit

ShuffleSplit iterator will generate a user defined number of independent train/test dataset splits.
Samples are first shuffled and then split into a pair of train and test sets. it is possible to control the
randomness for reproducibility of the results by explicitly seeding the <random state> pseudo
random number generator. In order to use this algorithm, the user needs to set the subnode:

<SKLtype>ShuffleSplit</SKLtype>.

In addition to this XML node, several others are available:

• <n splits>, integer, optional field, number of re-shuffling and splitting iterations
Default: 10.

• <test size>, float or integer, optional field, if float, should be between 0.0 and 1.0 and
represent the proportion of the dataset to include in the test split.
Default: 0.1 If integer, represents the absolute number of test samples. If not present, the
value is automatically set to the complement of the train size.

• <train size>, float or integer, optional field, if float, should be between 0.0 and 1.0
and represent the proportion of the dataset to include in the train split. If integer, represents
the absolute number of train samples. If not present, the value is automatically set to the
complement of the test size.

• <random state>, integer, optional field, when shuffle=True, pseudo-random number
generator state used for shuffling. If not present, use default numpy RNG for shuffling.

15.5.18.10 Label-Shuffle-Split

LabelShuffleSplit iterator behaves as a combination of ShuffleSplit and LeavePLabelOut, and
generates a sequence of randomized partitions in which a subset of labels are held out for each
split. In order to use this algorithm, the user needs to set the subnode:

<SKLtype>LabelShuffleSplit</SKLtype>.

In addition to this XML node, several others are available:

• <labels>, list of integers, (n samples), labels of samples.

• <n splits>, integer, optional field, number of re-shuffling and splitting iterations
Default: 10.
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• <test size>, float or integer, optional field, if float, should be between 0.0 and 1.0 and
represent the proportion of the dataset to include in the test split.
Default: 0.1 If integer, represents the absolute number of test samples. If not present, the
value is automatically set to the complement of the train size.

• <train size>, float or integer, optional field, if float, should be between 0.0 and 1.0
and represent the proportion of the dataset to include in the train split. If integer, represents
the absolute number of train samples. If not present, the value is automatically set to the
complement of the test size.

• <random state>, integer, optional field, when shuffle=True, pseudo-random number
generator state used for shuffling. If not present, use default numpy RNG for shuffling.

15.5.19 DataClassifier

The DataClassifier post-processor is specifically used to classify the data stored in the DataOb-
jects. It accepts two DataObjects, one is used as the classifier which must be a PointSet, the other
one, i.e. PointSet or HistorySet, is used as the input DataObject to be classified. In order to use
the DataClassifier PP, the user needs to set the subType of a <PostProcessor> node:

<PostProcessor name=’ppName’ subType=’DataClassifier’/>.

Several sub-nodes are available:

• <label>, string, required field, the name of the label that are used for the classifier. This
label must exist in the DataObject that is used as the classifer. This name will also be used
as the label name for the DataObject that is classified.

• <variable>, required, xml node. In this node, the following attribute should be specified:

– name, required, string attribute, the variable name, which should be exist in the
DataObject that is used as classifier.

and the following sub-node should also be specified:

– <Function>, string, required field, this function creates the mapping from input
DataObject to the Classifier.

* class, string, required field, the class of this function (e.g. Functions)

* type, string, required field, the type of this function (e.g. external)

In order to use this post-processor, the users need to specify two different DataObjects, i.e.
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<DataObjects>
<PointSet name="ET_PS">

<Input>ACC, LPI</Input>
<Output>sequence</Output>

</PointSet>
<PointSet name="sim_PS">

<Input>ACC_status, LPI_status</Input>
<Output>out</Output>

</PointSet>
</DataObjects>

The first data object “ET PS” contains the event tree with input variables “ACC, LPI” and output
label “sequence”. This data object will be used to classify the data in the second data object
“sim PS”. The results will be stored in the output data object with the same label “sequence”.
Since these two data objects contain different inputs, <Functions> will be used to create the
maps between the inputs:

<Functions>
<External file="func_ACC.py" name="func_ACC">

<variable>ACC_status</variable>
</External>
<External file="func_LPI.py" name="func_LPI">

<variable>LPI_status</variable>
</External>

</Functions>

The inputs to these functions are the inputs of the data object that will be classified, and the
outputs of these functions are the inputs of data object that is used as the classifier.

Example Python Function for “func ACC.py”

def evaluate(self):
return self.ACC_status

Example Python Function for “func LPI.py”

def evaluate(self):
return self.LPI_status

Note: All the functions that are used to create the maps should be include the “evaluate”
method.

The DataClassifier post-processor is specifically used to classify the data stored in the DataOb-
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jects. It accepts two DataObjects, one is used as the classifier which should be always PointSet,
the other one, i.e. either PointSet or HistorySet is used as the input DataObject to be classified.

The DataClassifier is provided below:

<PostProcessor name="ET_Classifier" subType="DataClassifier">
<label>sequence</label>
<variable name='ACC'>
<Function class="Functions"

type="External">func_ACC</Function>
</variable>
<variable name='LPI'>
<Function class="Functions"

type="External">func_LPI</Function>
</variable>

</PostProcessor>

The definitions for the XML nodes can be found in the RAVEN user manual. The label “sequence”
and the variables “ACC, LPI” should be exist in the data object that is used as the classifier, while
the functions “func ACC, func LPI” are used to map relationships between the input data objects.

The classification can be achieved via the <Steps> as shown below:

<Simulation>
...
<Steps>

<PostProcess name="classify">
<Input class="DataObjects" type="PointSet"

>ET_PS</Input>
<Input class="DataObjects" type="PointSet"

>sim_PS</Input>
<Model class="Models" type="PostProcessor"

>ET_Classifier</Model>
<Output class="DataObjects" type="PointSet"

>sim_PS</Output>
</PostProcess>

</Steps>
...
</Simulation>
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15.5.20 ValueDuration

The <ValueDuration> postprocessor is a tool to construct a particular kind of histogram,
where the independent variable is the number of times a variable exceeds a particular value, and
the dependent variable is the values themselves. An example of this is the Load Duration Curve in
energy modeling. This approach is similar to that used in Lebesgue integration. Note that for each
realization in the input <HistorySet>, a seperate load duration curve will be created for each
target.

The <ValueDuration> postprocessor can only act on <HistorySet> data objects, and
generates a <HistorySet> in return. Two output variables are created for each target:
’counts x’ and ’bins x’, where ’x’ is replaced by the name of the target. These must
be specified in the output data object in order to be collected.

To plot a traditional Load Duration Curve, the x-axis should be the bins variable, and the y-axis
should be the counts variable.

In order to use the ValueDuration PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’ValueDuration’/>.

Several sub-nodes are available:

• <target>, comma separated strings, required field, specifies the names of the target(s)
for which Value Duration histograms should be generated.

• <bins>, integer, required field, specifies the number of bins that the values of the targets
should be counted into.

Example:
<Simulation>
...
<Models>

...
<PostProcessor name="pp" subType="ValueDuration">

<target>x, y</target>
<bins>100</bins>

</PostProcessor>
...

</Models>
...
</Simulation>
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15.5.21 FastFourierTransform

The <FastFourierTransform> postprocessor provides access to the Numpy fast fourier
transform function numpy.fft.fft and provides the frequencies, periods, and amplitudes from
performing the transform. The periods are simply the inverse of the frequencies, and the frequency
units are the deltas between pivot values in the provided input. For example, if data is collected
every 3600 seconds, the units of frequency are per-hour. This postrpocessor expects uniformly-
spaced pivot values. Note that for each realization in the input data object, a separate fft will be
created for each target.

The <FastFourierTransform> postprocessor can act on any target in a DataObject that
depends on a single index, and generates three histories per sample per target: an independent vari-
able ’target fft frequency’, and two dependent values ’target fft period’ and
’target fft amplitude’, which both depend on the frequency by default. In all three out-
puts, target is replaced by the name of the target for which the fft was requested.

In order to use the FastFourierTransform PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’FastFourierTransform’/>.

Several sub-nodes are available:

• <target>, comma separated strings, required field, specifies the names of the target(s)
for which the fast Fourier transform should be calculated.

Example:

<Simulation>
...
<Models>

...
<PostProcessor name="pp" subType="FastFourierTransform">

<target>x, y</target>
</PostProcessor>
...

</Models>
...
</Simulation>
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15.5.22 SampleSelector

The <SampleSelector> postprocessor is a tool to select a row from a dataset, depending on
different criteria. The different criteria that can be used are listed below.

The <SampleSelector> postprocessor can act on any <DataObjects>, and generates a
<DataObject> with a single realization in return.

In order to use the SampleSelector PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’SampleSelector’/>.

Several sub-nodes are available:

• <criterion>, string, required field, specifies the criterion to select the realization from
the input DataObject. Options are as follows:

– ’min’, choose the realization that has the lowest value of the <target> variable.
The target must be scalar.

– ’max’, choose the realization that has the highest value of the <target> variable.
The target must be scalar.

– ’index’, choose the realization that has the provided index. The index must be an
integer and is zero-based, meaning the first entry is at index 0, the second entry is at
index 1, etc. The realization order is taken from the order in which they were entered
originally into the input DataObject. If this option is used, the <criterion> node
must have an value attribute that gives the index.

• <target>, string, optional field, required if the criterion targets a particular variable (such
as the minimum and maximum criteria). Specifies the name of the target for which the
criterion should be evaluated.

Example:

<Simulation>
...
<Models>

...
<PostProcessor name="select_min" subType="SampleSelector">

<target>x</target>
<criterion>min</criterion>

</PostProcessor>
...
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<PostProcessor name="select_index" subType="SampleSelector">
<criterion value='3'>index</criterion>

</PostProcessor>
...

</Models>
...
</Simulation>

15.5.23 EconomicRatio

The <EconomicRatio> post-processor provides the economic metrics from the percent change
period return of the asset or strategy that is given as an input. These metrics measure the risk-
adjusted returns. In order to use the EconomicRatio PP, the user needs to set the subType of a
<PostProcessor> node:

<PostProcessor name=’ppName’ subType=’EconomicRatio’/>.

Several sub-nodes are available:

• <"metric">, comma separated string or node list, required field, specifications for the
metric to be calculated. The name of each node is the requested metric. The text of the node
is a comma-separated list of the parameters for which the metric should be calculated.

Currently the scalar quantities available for request are:

– sharpeRatio: the Sharpe Ratio, measures the performance of an investment. It is
defined as the historical returns of the investment, divided by the standard deviation of
the investment(Volatility).

– sortinoRatio: the Sortino ratio, measures the risk-adjusted return of an investment as-
set. Discounts the excess return of a portfolio above a target threshold by the volatility
of downside returns. If this quantity is inputted as sortinoRatio the threshold for sep-
arate upside and downside value will assign as 0. Otherwise the user can specify this
quantity with a parameter threshold=’X’, where the X represents the requested
threshold median or zero.

– gainLossRatio: the gain-loss ratio, discounts the first-order higher partial moment of
a portfolio’s returns, by the first-order lower partial moment of a portfolio’s returns. If
this quantity is inputted as gainLossRatio the threshold for separate upside and down-
side value will assign as 0. Otherwise the user can specify this quantity with a param-
eter threshold=’X’, where the X represents the requested threshold median or
zero.

472



– expectedShortfall: the expected shortfall (Es) or conditional value at risk (CVaR), the
expected return on the portfolio in the worst q of cases. If this quantity is inputted as
ExpectedShortfall the q value will assign as 5%. Otherwise the user can specify this
quantity with a parameter threshold=’X’, where the X represents the requested q
value (a floating point value between 0.0 and 1.0)

ESα = − 1

α

∫ α

0

VaRγ(X) dγ (41)

– valueAtRisk: the value at risk for investments. Estimates the maximum possible loss
after exclude worse outcomes whose combined probability is at most α. If this quantity
is inputted as ValueAtRisk the α value will assign as 5%. Otherwise the user can specify
this quantity with a parameter threshold=’X’, where the X represents the requested
α value (a floating point value between 0.0 and 1.0)

VaRα(X) = − inf
{
x ∈ R : FX(x) > α

}
= F−1Y (1− α). (42)

This XML node needs to contain the attribute:

– prefix, required string attribute, user-defined prefix for the given metric. For scalar
quantifies, RAVEN will define a variable with name defined as: “prefix” + “ ” + “pa-
rameter name”. For example, if we define “mean” as the prefix for expectedValue, and
parameter “x”, then variable “mean x” will be defined by RAVEN. For matrix quan-
tities, RAVEN will define a variable with name defined as: “prefix” + “ ” + “target
parameter name” + “ ” + “feature parameter name”. For example, if we define “sen”
as the prefix for sensitivity, target “y” and feature “x”, then variable “sen y x” will
be defined by RAVEN. Note: These variable will be used by RAVEN for the internal
calculations. It is also accessible by the user through DataObjects and OutStreams.

Example:

<Simulation>
...

<Models>
...
<PostProcessor name="EconomicRatio" subType="EconomicRatio"

verbosity="debug">
<sharpeRatio prefix="SR">x0,y0,z0,x,y,z</sharpeRatio>
<sortinoRatio threshold='zero'

prefix="stR">x01,y01,x,z</sortinoRatio>
<sortinoRatio threshold='median'

prefix="stR2">z01,x0,x01</sortinoRatio>
<valueAtRisk threshold='0.07'

prefix="VaR">z01,x0,x01</valueAtRisk>

473



<expectedShortfall threshold='0.99'
prefix="CVaR">z01,x0,x01</expectedShortfall>

<gainLossRatio
prefix="glR">x01,y01,z0,x,y,z</gainLossRatio>

</PostProcessor>
...

</Models>
...

</Simulation>

15.6 EnsembleModel

As already mentioned, the EnsembleModel is able to combine Code(see 15.1), ExternalModel(see
15.4) and ROM(see 15.4) Models.
It is aimed to create a chain of Models (whose execution order is determined by the Input/Output
relationships among them). If the relationships among the models evolve in a non-linear system, a
Picard’s Iteration scheme is employed.
Currently this model is able to share information (i.e. data) using PointSet, HistorySet and
DataSet

The specifications of a EnsembleModel must be defined within the XML block <EnsembleModel>.
This XML node needs to contain the attributes:

• name, required string attribute, user-defined name of this EnsembleModel. Note: As with
the other objects, this is the name that can be used to refer to this specific entity from other
input blocks in the XML.

• subType, required string attribute, must be kept empty.

Within the <EnsembleModel> XML node, the multiple Models that constitute this Ensem-
bleModel needs to be inputted. Each Model is specified within a <Model> block ( Note: each
model here specified need to be inputted in the<Models> main XML block) :

• <Model>, XML node, required parameter. The text portion of this node needs to contain
the name of the Model
This XML node needs to contain the attributes:

– class, required string attribute, the class of this sub-model (e.g. Models)
– type, required string attribute, the sub-type of this Model (e.g. ExternalModel,

ROM, Code)
In addition the following XML sub-nodes need to be inputted (or optionally inputted):
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– <TargetEvaluation>, string, required field, represents the container where the
output of this Model are stored. From a practical point of view, this XML node must
contain the name of a data object defined in the <DataObjects> block (see Sec-
tion 12). Currently, the <EnsembleModel> accept all DataObjects’ types: PointSet,
HistorySet and DataSet Note: The <TargetEvaluation> is primary used for
input-output identification. If the linked DataObject is not placed as additional output
of the Step where the EnsembleModel is used, it will not be filled with the data coming
from the calculation and it will be kept empty.

– <Input>, string, required field, represents the input entities that need to be passed
to this sub-model The user can specify as many <Input> as required by the sub-
model. Note: All the inputs here specified need to be listed in the Steps where the
EnsembleModel is used.

– <Output>, string, optional field, represents the output entities that need to be linked
to this sub-model. Note: The <Output>s here specified are not part of the determi-
nation of the EnsembleModel execution but represent an additional storage of results
from the sub-models. For example, if the <TargetEvaluation> is of type PointSet
(since just scalar data needs to be transferred to other models) and the sub-model is able
to also output history-type data, this Output can be of type HistorySet. Note that the
structure of each Output dataObject must include only variables (either input or out-
put) that are defined among the model. As an example, the Output dataObjects cannot
contained variables that are defined at the Ensemble model level. The user can specify
as many <Output> (s) as needed. The optional <Output>s can be of both classes
“DataObjects” and “Databases” (e.g. PointSet, HistorySet, DataSet, HDF5) Note: The
<Output> (s) here specified MUST be listed in the Step in which the Ensemble-
Model is used.

It is important to notice that when the EnsembleModel detects a chain of models that evolve
in a non-linear system, a Picard’s Iteration scheme is activated. In this case, an additional XML
sub-node within the main <EnsembleModel> XML node needs to be specified:

• <settings>, XML node, required parameter (if Picard’s activated). The body of this
sub-node contains the following XML sub-nodes:

– <maxIterations>, integer, optional field, maximum number of Picard’s iteration
to be performed (in case the iteration scheme does not previously converge).
Default: 30;

– <tolerance>, float, optional field, convergence criterion. It represents the L2 norm
residue below which the Picard’s iterative scheme is considered converged.
Default: 0.001;

– <initialConditions>, XML node, required parameter (if Picard’s activated),
Within this sub-node, the initial conditions for the input variables (that are part of a
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loop) need to be specified in sub-nodes named with the variable name (e.g. <varName>).
The body of the <varName> contains the value of the initial conditions (scalar or ar-
rays, depending of the type of variable). If an array needs to be inputted, the user can
specify the attribute repeat and the code is going to repeat for repeat-times the
value inputted in the body.

– <initialStartModels>, XML node, only required parameter when Picard’s it-
eration is activated, specifies the list of models that will be initially executed. Note: Do
not input this node for non-Picard calculations, otherwise an error will be raised.

Note: It is crucial to understand that the choice of the <DataObject> used as
<TargetEvaluation> determines how the data are going to be transferred from a model
to the other. If for example the chain of models is A→ B:

• If modelB expects as input scalars and outputs time-series, the <TargetEvaluation>
of the model B will be a HistorySet and the <TargetEvaluation> of the model A
will be either a PointSet or a DataSet (where the output variables that need to be trans-
ferred to the model A are scalars)

• If model B expects as input scalars and time-series and outputs time-series or scalars
or both, the <TargetEvaluation> of the model B will be a DataSet and the
<TargetEvaluation> of the model A will be either a HistorySet or a DataSet

• If both modelA andB expect as input scalars and output scalars, the <TargetEvaluation>
of the both models A and B will be PointSets

Example (Linear System):

<Simulation>
...
<Models>

...
<EnsembleModel name="heatTransferEnsembleModel" subType="">

<Model class="Models" type="ExternalModel">
thermalConductivityComputation
<TargetEvaluation class="DataObjects" type="PointSet">

thermalConductivityComputationContainer
</TargetEvaluation>
<Input class="DataObjects" type="PointSet">

inputHolder
</Input>

</Model>
<Model class="Models" type="ExternalModel" >

heatTransfer
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<TargetEvaluation class="DataObjects" type="PointSet">
heatTransferContainer

</TargetEvaluation>
<Input class="DataObjects" type="PointSet">

inputHolder
</Input>
<Output class="DataObjects" type="HistorySet">

thisModelLinkedOutput
</Output>
<Output class="Databases" type="HDF5">

thisModelLinkedHDF5
</Output>

</Model>
</EnsembleModel>
...

</Models>
...

</Simulation>

Example (Non-Linear System):

<Simulation>
...
<Models>

...
<EnsembleModel name="heatTransferEnsembleModel" subType="">

<settings>
<maxIterations>8</maxIterations>
<tolerance>0.01</tolerance>
<initialConditions>
<!-- the value 0.7 is going to be repeated 10 times

in order to create an array for var1 -->
<var1 repeat="10">0.7</var1>
<!-- an array for var2 has been inputted -->
<var2> 0.5 0.3 0.4</var2>
<!-- a scalar for var3 has been inputted -->
<var3> 45.0</var3>

</initialConditions>
</settings>

<Model class="Models" type="ExternalModel">
thermalConductivityComputation
<TargetEvaluation class="DataObjects" type="PointSet">

477



thermalConductivityComputationContainer
</TargetEvaluation>
<Input class="DataObjects" type="PointSet">

inputHolder
</Input>

</Model>
<Model class="Models" type="ExternalModel" >

heatTransfer
<TargetEvaluation class="DataObjects" type="PointSet">

heatTransferContainer
</TargetEvaluation>

<Input class="DataObjects" type="PointSet">
inputHolder

</Input>
</Model>

</EnsembleModel>
...

</Models>
...

</Simulation>

15.7 HybridModel

The HybridModel is a new Model entity. This new Model is able to combine reduced order model
(ROMs) and any other high-fidelity Model (i.e. Code, ExternalModel). The ROMs will be trained
based on the results from the high-fidelity model. The accuracy of the ROMs will be evaluated
based on the cross validation scores, and the validity of the ROMs will be determined via some
local validation metrics ( Note: currently only one metric is available, i.e. CrowdingDistance).
After these ROMs are trained, the HybridModel can decide which of the Model (i.e the ROMs or
high-fidelity model) to be executed based on the accuracy and validity of the ROMs.

Currently this model is only able to share information (i.e. data) using PointSet.

The specifications of a HybridModel must be defined within the XML block <HybridModel>.
This XML node needs to contain the attributes:

• name, required string attribute, user-defined name of this HybridModel. Note: As with
the other objects, this is the name that can be used to refer to this specific entity from other
input blocks in the XML.

• subType, required string attribute, must be kept empty.
Within the <HybridModel> XML node, the multiple entities that constitute this Hybrid-

Model needs to be inputted.
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• <Model>, XML node, required parameter. The text portion of this node needs to contain
the name of the Model This XML node needs to contain the attributes:

– class, required string attribute, the main “class” of the Model.

– type, required string attribute, the sub-type of the Model.

• <ROM>, XML node, required parameter. The text portion of this node needs to contain
the name of the ROM The user can specify as many <ROM> as required by the <Model>.
Note: The outputs of each ROM should be different, and the total set of ROMs’ outputs

should be the same as the set of Model’s outputs. This XML node needs to contain the
attributes:

– class, required string attribute, the main “class” of the Model.

– type, required string attribute, the sub-type of the Model.

• <CV>, XML node, required parameter. The text portion of this node needs to contain the
name of the <PostProcessor> with subType “CrossValidation“. This XML node
needs to contain the attributes:

– class, required string attribute, the main “class” of the Model.

– type, required string attribute, the sub-type of the Model.

• <TargetEvaluation>, XML node, required parameter. The text portion of this node
needs to contain the name of a data object defined in the <DataObjects> block. Note: cur-
rently only accept data object with type “PointSet“. The <TargetEvaluation> is pri-
mary used for training ROMs. Note: The linked DataObject should be placed as additional
output of the Step where the HybridModel is used. This XML node needs to contain the
attributes:

– class, required string attribute, the main “class” of the DataObjects.

– type, required string attribute, the sub-type of the DataObjects.

An additional XML sub-node within the main <HybridModel>XML node needs to be spec-
ified:

• <settings>, XML node, optional parameter. The body of this sub-node contains the
following XML sub-nodes:

– <minInitialTrainSize>, integer, optional field, the minimum initial number of
high-fidelity model runs before starting train the ROMs.
Default: 10;

479



– <tolerance>, float, optional field, ROMs convergence criterion indicates the dis-
placement from the optimum results of cross validation. In other words, small toler-
ance indicates tight convergence criterion of the ROMs, while large tolerance indicates
loose convergence criterion of the ROMs. Note: Currently, this tolerance can be only
used for cross validations with SKL Metrics: explained variance score, r2 score, me-
dian absolute error, mean squared error and mean absolute error.
Default: 0.01;

– <maxTrainSize>, XML node, optional field, the maximum size of training set of
ROMs.
Default: 1.0E6

• <validationMethod>, XML node, optional parameter. The validity methods that are
used to determine which model to run (i.e. ROMs or high-fidelity Model). This XML node
needs to contain the attributes:

– name, required string attribute, user-defined name of this <validationMethod>.
Note: Currently, only one method is available, ie. “CrowdingDistance“.

The body of this sub-node contains the following XML sub-nodes:

– <threshold>, XML node, required field, the threshold that is used for “Crowd-
ingDistance“ method.

Example (ExternalModel):

<Simulation>
...
<Metrics>

<SKL name="m1">
<metricType>mean_absolute_error</metricType>

</SKL>
</Metrics>

<Models>
<ExternalModel ModuleToLoad="EM2linear"

name="thermalConductivityComputation" subType="">
<variables>leftTemperature,rightTemperature,k,averageTemperature</variables>

</ExternalModel>
<ROM name="knr" subType="SciKitLearn">

<SKLtype>neighbors|KNeighborsRegressor</SKLtype>
<Features>leftTemperature, rightTemperature</Features>
<Target>k</Target>
<n_neighbors>5</n_neighbors>
<weights>uniform</weights>
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<algorithm>auto</algorithm>
<leaf_size>30</leaf_size>
<metric>minkowski</metric>
<p>2</p>

</ROM>
<PostProcessor name="pp1" subType="CrossValidation">

<SciKitLearn>
<SKLtype>KFold</SKLtype>
<n_splits>10</n_splits>
<shuffle>False</shuffle>

</SciKitLearn>
<Metric class="Metrics" type="SKL">m1</Metric>

</PostProcessor>
<HybridModel name="hybrid" subType="">

<Model class="Models"
type="ExternalModel">thermalConductivityComputation</Model>

<ROM class="Models" type="ROM">knr</ROM>
<TargetEvaluation class="DataObjects"

type="PointSet">thermalConductivityComputationContainer</TargetEvaluation>
<CV class="Models" type="PostProcessor">pp1</CV>
<settings>

<tolerance>0.01</tolerance>
<trainStep>1</trainStep>
<maxTrainSize>1000</maxTrainSize>
<initialTrainSize>10</initialTrainSize>

</settings>
<validationMethod name="CrowdingDistance">

<threshold>0.2</threshold>
</validationMethod>

</HybridModel>
</Models>
...

</Simulation>

Example (Code):

<Simulation>
...
<Metrics>

<SKL name="m1">
<metricType>mean_absolute_error</metricType>

</SKL>
</Metrics>
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<Models>
<Code name="poly" subType="GenericCode">

<executable>runCode/poly_inp_io.py</executable>
<clargs arg="python" type="prepend"/>
<clargs arg="-i" extension=".one" type="input"/>
<fileargs arg="aux" extension=".two" type="input"/>
<fileargs arg="output" type="output"/>
<prepend>python</prepend>

</Code>
<ROM name="knr" subType="SciKitLearn">

<SKLtype>neighbors|KNeighborsRegressor</SKLtype>
<Features>x, y</Features>
<Target>poly</Target>
<n_neighbors>5</n_neighbors>
<weights>uniform</weights>
<algorithm>auto</algorithm>
<leaf_size>30</leaf_size>
<metric>minkowski</metric>
<p>2</p>

</ROM>
<PostProcessor name="pp1" subType="CrossValidation">

<SciKitLearn>
<SKLtype>KFold</SKLtype>
<n_splits>10</n_splits>
<shuffle>False</shuffle>

</SciKitLearn>
<Metric class="Metrics" type="SKL">m1</Metric>

</PostProcessor>
<HybridModel name="hybrid" subType="">

<Model class="Models" type="Code">poly</Model>
<ROM class="Models" type="ROM">knr</ROM>
<TargetEvaluation class="DataObjects"

type="PointSet">samples</TargetEvaluation>
<CV class="Models" type="PostProcessor">pp1</CV>
<settings>

<tolerance>0.1</tolerance>
<trainStep>1</trainStep>
<maxTrainSize>1000</maxTrainSize>
<initialTrainSize>10</initialTrainSize>

</settings>
<validationMethod name="CrowdingDistance">
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<threshold>0.2</threshold>
</validationMethod>

</HybridModel>
</Models>
...
<Steps>

<MultiRun name="hybridModelCode">
<Input class="Files" type="">gen.one</Input>
<Input class="Files" type="">gen.two</Input>
<Input class="DataObjects"

type="PointSet">inputHolder</Input>
<Model class="Models" type="HybridModel">hybrid</Model>
<Sampler class="Samplers" type="Stratified">LHS</Sampler>
<Output class="DataObjects"

type="PointSet">samples</Output>
<Output class="OutStreams" type="Print">samples</Output>

</MultiRun>
</Steps>
...

</Simulation>

Note: For this example, the user needs to provide all the inputs for the HybridModel, i.e. Files
for the Code and DataObject for the ROM defined in the HybridModel.

15.8 LogicalModel

The LogicalModel is a model aimed to execute ROMs, Codes and ExternalModels via a user
provided control function. Basically, the control function utilizes the inputs generated by RAVEN
and the control logic provided by the user to determine which model to execute. Note: For this
type of model, we currently require all models listed under LogicalModel should have the same
inputs and outputs from RAVEN point of view.

The specifications of a LogicalModel must be defined within the XML block <LogicalModel>.
This XML node needs to contain the attributes:

• name, required string attribute, user-defined name of this LogicalModel. Note: As with
the other objects, this is the name that can be used to refer to this specific entity from other
input blocks in the XML.

• subType, required string attribute, must be kept empty.

Within the <LogicalModel> XML node, the multiple entities that constitute this Logi-
calModel needs to be inputted.
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• <Model>, XML node, required parameter. The text portion of this node needs to contain
the name of the Model This XML node needs to contain the attributes:

– class, required string attribute, the main “class” of the Model.

– type, required string attribute, the sub-type of the Model.

Note: The user can provided various <Model> entities, including ’Code’, ’ROM’ and
’ExternalModel’.

• <ControlFunction>, XML node, required parameter. The text portion of this node
needs to contain the name of the function. This XML node needs to contain the attributes:

– class, required string attribute, the main “class” of the ControlFunction.

– type, required string attribute, the sub-type of the ControlFunction.

Note: In order to work properly, this function must have a method named “evaluate” that
returns a single python str object representing the model that would be executed.

Example (LogicalModel using external models):

<Simulation>
...
<Models>

<ExternalModel ModuleToLoad="sum" name="sum" subType="">
<variables>x, y, z</variables>

</ExternalModel>

<ExternalModel ModuleToLoad="minus" name="minus" subType="">
<variables>x, y, z</variables>

</ExternalModel>

<ExternalModel ModuleToLoad="multiply" name="multiply"
subType="">
<variables>x, y, z</variables>

</ExternalModel>

<LogicalModel name="logical" subType="">
<Model class="Models" type="ExternalModel">sum</Model>
<Model class="Models" type="ExternalModel">minus</Model>
<Model class="Models" type="ExternalModel">multiply</Model>
<ControlFunction class="Functions"

type="External">control</ControlFunction>
</LogicalModel>

</Models>
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...
<Steps>

<MultiRun name="mc">
<Input class="DataObjects"

type="PointSet">inputHolder</Input>
<Model class="Models" type="LogicalModel">logical</Model>
<Sampler class="Samplers"

type="MonteCarlo">MonteCarlo</Sampler>
<Output class="DataObjects" type="PointSet">outSet</Output>
<Output class="DataObjects"

type="PointSet">tagetSet</Output>
<Output class="OutStreams" type="Print">dumpOut</Output>

</MultiRun>
</Steps>
...

</Simulation>

Corresponding Python function for <ControlFunction>:

def evaluate(self):
"""

Method required by RAVEN to run this as an external model.
@ In, self, object, object to store members on
@ Out, model, str, the name of external model that

will be executed by hybrid model
"""
model = None
if self.x > 0 and self.y >1:

model = 'sum'
elif self.x > 0 and self.y <= 1:

model = 'multiply'
else:

model = 'minus'
return model

Example (LogicalModel using codes):

<Simulation>
...
<Models>

<Code name="poly" subType="GenericCode">
<executable>logicalCode/poly_code.py</executable>
<clargs arg="python" type="prepend"/>

485



<clargs arg="-i" extension=".one" type="input"/>
<fileargs arg="aux" extension=".two" type="input"/>
<fileargs arg="output" type="output"/>

</Code>
<Code name="exp" subType="GenericCode">

<executable>logicalCode/exp_code.py</executable>
<clargs arg="python" type="prepend"/>
<clargs arg="-i" extension=".one" type="input"/>
<fileargs arg="aux" extension=".two" type="input"/>
<fileargs arg="output" type="output"/>

</Code>
<LogicalModel name="logical" subType="">

<Model class="Models" type="Code">poly</Model>
<Model class="Models" type="Code">exp</Model>
<ControlFunction class="Functions"

type="External">control</ControlFunction>
</LogicalModel>

</Models>
...
<Steps>

<MultiRun name="logicalModelCode">
<Input class="Files" type="">gen.one</Input>
<Input class="Files" type="">gen.two</Input>
<Model class="Models" type="LogicalModel">logical</Model>
<Sampler class="Samplers" type="Stratified">LHS</Sampler>
<Output class="DataObjects"

type="PointSet">samples</Output>
<Output class="OutStreams" type="Print">samples</Output>

</MultiRun>
</Steps>
...

</Simulation>

Corresponding Python function for <ControlFunction>:

def evaluate(self):
"""

Method required by RAVEN to run this as an external model.
@ In, self, object, object to store members on
@ Out, model, str, the name of external model that

will be executed by hybrid model
"""
model = None
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if self.x > 0.5 and self.y > 1.5:
model = 'poly'

else:
model = 'exp'

return model

Note: For these examples, the user needs to provide all the inputs for the models listed under
LogicalModel, i.e. Files for the Code and DataObject for the ExternalModel defined in the
LogicalModel.
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16 Functions

The RAVEN code provides support for the usage of user-defined external functions. These func-
tions are python modules, with a format that is automatically interpretable by the RAVEN frame-
work. For example, users can define their own method to perform a particular post-processing
activity and the code will be embedded and use the function as though it were an active part of the
code itself. In this section, the XML input syntax and the format of the accepted functions are fully
specified.

The specifications of an external function must be defined within the XML block <External>.
This XML node requires the following attributes:

• name, required string attribute, user-defined name of this function. Note: As with other
objects, this name can be used to refer to this specific entity from other input blocks in the
XML.

• file, required string attribute, absolute or relative path specifying the code associated to
this function. Note: If a relative path is specified, it must be relative with respect to where
the user is running the instance of RAVEN.

In order to make the RAVEN code aware of the variables the user is going to manipulate/use in
her/his own python function, the variables need to be specified in the <External> input block.
The user needs to input, within this block, only the variables directly used by the external function
and not the local variables that the user does not want, for example, those stored in a RAVEN
internal object. These variables are inputted in a single <variables> XML node:

• <variables>, comma separated list, required parameter, in the body of this XML node,
the user needs to specify the name of the variables (separated by commas). This variables
need to match variables used/defined in the external python function.

When the external function variables are defined, at runtime, RAVEN initializes them and keeps
track of their values during the simulation. Each variable defined in the <External> block is
available in the function as a python self. member. In the following, an example of a user-
defined external function is reported (a python module and its related XML input specifications).

Example Python Function:

import numpy as np
def residuumSign(self):

if self.var1 < self.var2 :
return 1

else:
return -1
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Example XML Input:

...
<Functions>

...
<External name='whatever' file='path_to_python_file'>
...
<variables>var1,var2</variables>
...
</External>
...

</Functions>
...

</Simulation>
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17 Metrics

The Metrics block allows the user to specify the similarity/dissimilarity metrics to be used for other
RAVEN entities, such as PostProcessors, and HybridModel.

In the RAVEN input file these metrics are defined as follows:

<Simulation>
...
<Metrics>

...
<MetricID name='metricName'>

...
<param1>value</param1>
...

</MetricID>
...

</Metrics>
...

</Simulation>

The metrics, that are available in RAVEN, can be categorized into several main classes:

• Paired Distance Metric, distance metrics between two variables u and v, such as ’euclidean’,
’manhattan’, ’minkowski’ and so on.

• Regression Metric, measure the regression performance, such as ’mean squared error’,
’r2 score’, ’explained variance score’ and ’mean absolute error’.

• Boolean Metric, distance metrics between two boolean variables u and v, such as ’dice’,
’hamming’, ’yule’ and so on.

• Pairwise Metric, compute the distance or kernel between each pair of the two collections of
input or observations in n-dimensional space. Note: These metrics can be only used in the
clustering post-processor of data mining.

• Other metric, such as ’DTW’.

The valid MetricIDs are: <SKL>, <ScipyMetric>, <DTW>, <CDFAreaDifference>,
and <PDFCommonArea>. This XML node requires the following attributes:

• name, required string attribute, user-defined name of this metric. Note: As with other
objects, this name can be used to refer to this specific entity from other input blocks in the
XML.
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Note: If you are using <ScipyMetric>, please pay more attention on the weight associated
with the metric calculations. Scipy does not normalize the weight during the calculation, and the
results can be significant difference from the normalized weight.

In RAVEN, lots of metrics are just interfaces directly with metrics available within Scipy and
SciKit-Learn. In this case, the algorithm for the metrics is choosen by the subnode <metricType>
under the parent node <SKL> (metric from SciKit-Learn) or <ScipyMetric> (metric from
Scipy). For example, <metricType>’paired distance|euclidean’</metricType>.

In the following sub-sections, the input requirements for all of the metrics are presented in the
following sections.

17.1 Paired Distance Metric

17.1.1 Euclidean

This metric compute the paired euclidean distances between u and v, i.e.

||u− v||2 (43)

This metric interface directly with the metric available within SciKit-Learn. The specifications
of this metric must be defined within the XML block <SKL>. This XML node needs to contain
the following subnode:

• <metricType>paired distance|euclidean</metricType>, vertical bar (|)
separated string, required field.

17.1.2 Cosine

This metric computes the paired cosine distances between u and v, i.e.

1− u · v
||u||2||v||2

(44)

where u · v is the dot product of u and v

This metric interface directly with the metric available within SciKit-Learn. The specifications
of this metric must be defined within the XML block <SKL>. This XML node needs to contain
the following subnode:

• <metricType>paired distance|cosine</metricType>, vertical bar (|) sep-
arated string, required field.
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17.1.3 Manhattan

This metric computes the L1 distances between u and v, i.e.∑
i

|ui − vi| (45)

This metric interface directly with the metric available within SciKit-Learn. The specifications
of this metric must be defined within the XML block <SKL>. This XML node needs to contain
the following subnode:

• <metricType>paired distance|manhattan</metricType>, vertical bar (|)
separated string, required field.

17.1.4 Braycurtis

This metric computes the Bray-Curtis distances between u and v, i.e.∑
|ui − vi|/

∑
|ui + vi| (46)

The Bray-Curtis distance is in the range [0, 1]. This metric interface directly with the metric
available within Scipy. The specifications of this metric must be defined within the XML block
<ScipyMetric>. This XML node needs to contain the following subnode:

• <metricType>paired distance|braycurtis</metricType>, vertical bar (|)
separated string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.1.5 Canberra

This metric computes the Canberra distance between u and v, i.e.

d(u, v) =
∑
i

|ui − vi|
|ui|+ |vi|

(47)
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This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>paired distance|canberra</metricType>, vertical bar (|) sep-
arated string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.1.6 Correlation

This metric computes the correlation distance between u and v, i.e.

1− (u− ū) · (v − v̄)

||(u− ū)||2||(v − v̄)||2
(48)

where ū is the mean of the elements of u

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>paired distance|correlation</metricType>, vertical bar (|)
separated string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.1.7 Minkowski

This metric computes the Minkowski distance between u and v, i.e.

||u− v||p = (
∑
|ui − vi|p)1/p (49)
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This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>paired distance|minkowski</metricType>, vertical bar (|)
separated string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

• <p>, float, required field, value for the parameter p

In the RAVEN input file, these metrics are defined as follows:

<Simulation>
...
<Metrics>

<SKL name="euclidean">
<metricType>paired_distance|euclidean</metricType>

</SKL>
<SKL name="cosine">

<metricType>paired_distance|cosine</metricType>
</SKL>
<SKL name="manhattan">

<metricType>paired_distance|manhattan</metricType>
</SKL>
<ScipyMetric name="braycurtis">

<metricType>paired_distance|braycurtis</metricType>
</ScipyMetric>
<ScipyMetric name="canberra">

<metricType>paired_distance|canberra</metricType>
</ScipyMetric>
<ScipyMetric name="correlation">

<metricType>paired_distance|correlation</metricType>
</ScipyMetric>
<ScipyMetric name="minkowski">

<metricType>paired_distance|minkowski</metricType>
<p>5</p>
<w>0.1, 0.1, 0.1, 0.1, 0.1</w>
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</ScipyMetric>
</Metrics>
...

</Simulation>

17.2 Regression Metric

17.2.1 Explained variance score

This metric computes the explained variance regression score, i.e.

1.0− V ar[u− v]

V ar[u]
(50)

The best possible score is 1.0, lower values are worse.

This metric interface directly with the metric available within Scikit-Learn. The specifications
of this metric must be defined within the XML block <SKL>. This XML node needs to contain
the following subnode:

• <metricType>regression|explained variance score</metricType>, ver-
tical bar (|) separated string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <sample weight>, comma separated floats, optional parameter, the weights for each
value in u and v. Default is None, which gives each value a weight of 1.0.

17.2.2 Mean absolute error

This metric computes mean absolute error, a risk metric corresponding to the expected value of the
absolute error loss or l1-norm loss.

1

nsamples

nsamples−1∑
i=0

|ui − vi| (51)

This metric interface directly with the metric available within Scikit-Learn. The specifications
of this metric must be defined within the XML block <SKL>. This XML node needs to contain
the following subnode:
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• <metricType>regression|mean absolute error</metricType>, vertical bar
(|) separated string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <sample weight>, comma separated floats, optional parameter, the weights for each
value in u and v. Default is None, which gives each value a weight of 1.0.

17.2.3 Mean squared error

This metric computes mean square error, a risk metric corresponding to the expected value of the
squared error or loss.

1

nsamples

nsamples−1∑
i=0

(ui − vi)2 (52)

This metric interface directly with the metric available within Scikit-Learn. The specifications
of this metric must be defined within the XML block <SKL>. This XML node needs to contain
the following subnode:

• <metricType>regression|mean squared error</metricType>, vertical bar
(|) separated string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <sample weight>, comma separated floats, optional parameter, the weights for each
value in u and v. Default is None, which gives each value a weight of 1.0.

17.2.4 R2 score

This metric computes the coefficient of determination, i.e.

1.0−
∑nsamples−1

i=0 (ui − vi)2∑nsamples−1
i=0 (ui −mean[u])2

(53)

It provides a measure of how well future samples are likely to be predicted by the model. Best
possible score is 1.0 and it can be negative.

This metric interface directly with the metric available within Scikit-Learn. The specifications
of this metric must be defined within the XML block <SKL>. This XML node needs to contain
the following subnode:
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• <metricType>regression|r2 score</metricType>, vertical bar (|) separated
string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <sample weight>, comma separated floats, optional parameter, the weights for each
value in u and v. Default is None, which gives each value a weight of 1.0.

In the RAVEN input file, these metrics are defined as follows:

<Simulation>
...
<Metrics>

<SKL name="explained_variance_score">
<metricType>regression|explained_variance_score</metricType>
<sample_weight>0.1,0.1,0.1,0.05,0.05</sample_weight>

</SKL>
<SKL name="mean_absolute_error">

<metricType>regression|mean_absolute_error</metricType>
<sample_weight>0.1,0.1,0.1,0.05,0.05</sample_weight>

</SKL>
<SKL name="r2_score">

<metricType>regression|r2_score</metricType>
<sample_weight>0.1,0.1,0.1,0.05,0.05</sample_weight>

</SKL>
<SKL name="mean_squared_error">

<metricType>regression|mean_squared_error</metricType>
<sample_weight>0.1,0.1,0.1,0.05,0.05</sample_weight>

</SKL>
</Metrics>
...

</Simulation>

17.3 Boolean Metric

17.3.1 Dice

This metric computes the Dice dissimilarity between two boolean variables u and v

cTF + cFT
2cTT + cFT + cTF

(54)
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where cij is the number of occurrences of u[k] = i and v[k] = j for k < n

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>boolean|dice</metricType>, vertical bar (|) separated string,
required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.3.2 Hamming

This metric computes the Hamming distance between two boolean variables u and v, i.e.

c01 + c10
n

(55)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>boolean|hamming</metricType>, vertical bar (|) separated string,
required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.3.3 Jaccard

This metric computes the Jaccard-Needham dissimilarity distance between two boolean variables
u and v, i.e.

cTF + cFT
cTT + cFT + cTF

(56)
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where cij is the number of occurrences of u[k] = i and v[k] = j for k < n

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>boolean|jaccard</metricType>, vertical bar (|) separated string,
required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.3.4 Kulsinski

This metric computes the Kulsinski dissimilarity distance between two boolean variables u and v,
i.e.

cTF + cFT − cTT + n

cFT + cTF + n
(57)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>boolean|kulsinski</metricType>, vertical bar (|) separated
string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.3.5 Rogerstanimoto

This metric computes the Rogers-Tanimoto dissimilarity distance between two boolean variables
u and v, i.e.

R

cTT + cFF +R
(58)
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where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and R = 2(cTF + cFT )

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>boolean|rogerstanimoto</metricType>, vertical bar (|) sep-
arated string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.3.6 Russellrao

This metric computes the Russell-Rao dissimilarity distance between two boolean variables u and
v, i.e.

n− cTT
n

(59)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>boolean|russellrao</metricType>, vertical bar (|) separated
string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.3.7 Sokalmichener

This metric computes the Sokal-Michener dissimilarity distance between two boolean variables u
and v, i.e.

R

S +R
(60)
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where cij is the number of occurrences of u[k] = i and v[k] = j for k < n, R = 2 ∗ (cTF + cFT )
and S = cFF + cTT

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>boolean|sokalmichener</metricType>, vertical bar (|) sepa-
rated string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.3.8 Sokalsneath

This metric computes the Sokal-Sneath dissimilarity distance between two boolean variables u and
v, i.e.

R

cTT +R
(61)

where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and R = 2(cTF + cFT )

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>boolean|sokalsneath</metricType>, vertical bar (|) separated
string, required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

17.3.9 Yule

This metric computes the Yule dissimilarity distance between two boolean variables u and v, i.e.

R

cTT ∗ cFF + R
2

(62)
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where cij is the number of occurrences of u[k] = i and v[k] = j for k < n and R = 2.0 ∗ cTF ∗ cFT

This metric interface directly with the metric available within Scipy. The specifications of
this metric must be defined within the XML block <ScipyMetric>. This XML node needs to
contain the following subnode:

• <metricType>boolean|yule</metricType>, vertical bar (|) separated string,
required field.

In addition to this XML subnode, the users can also specify the weights for given metric:

• <w>, comma separated floats, optional parameter, the weights for each value in u and v.
Default is None, which gives each value a weight of 1.0.

An example of Boolean metric defined in RAVEN is provided below:

<Simulation>
...
<Metrics>

...
<ScipyMetric name="rogerstanimoto">

<metricType>boolean|rogerstanimoto</metricType>
</ScipyMetric>
<ScipyMetric name="dice">

<metricType>boolean|dice</metricType>
</ScipyMetric>
<ScipyMetric name="hamming">

<metricType>boolean|hamming</metricType>
</ScipyMetric>
<ScipyMetric name="jaccard">

<metricType>boolean|jaccard</metricType>
</ScipyMetric>
<ScipyMetric name="kulsinski">

<metricType>boolean|kulsinski</metricType>
</ScipyMetric>
<ScipyMetric name="russellrao">

<metricType>boolean|russellrao</metricType>
</ScipyMetric>
<ScipyMetric name="sokalmichener">

<metricType>boolean|sokalmichener</metricType>
</ScipyMetric>
<ScipyMetric name="sokalsneath">
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<metricType>boolean|sokalsneath</metricType>
</ScipyMetric>
<ScipyMetric name="yule">

<metricType>boolean|yule</metricType>
</ScipyMetric>
...

</Metrics>
...

</Simulation>

17.4 Dynamic Time Warping

The Dynamic Time Warping (DTW) is a distance metrice that is used to measure similarity be-
tween two sequences, i.e. temporal sequences.

The specifications of a DTW distance must be defined within the XML block. <DTW>.

This XML node needs to contain the attributes:

• <order>, int, required field, order of the DTW calculation: 0 specifices a classical DTW
caluclation and 1 specifies a derivative DTW calculation

• <localDistance>, string, required field, the ID of the distance function to be employed
to determine the local distance evaluation of two time series. Available options are provided
by the Scipy pairwise distances (cityblock, cosine, euclidean, l1, l2, manhattan, braycurtis,
canberra, chebyshev, correlation, dice, hamming, jaccard, kulsinski, mahalanobis, match-
ing, minkowski, rogerstanimoto, russellrao, seuclidean, sokalmichener, sokalsneath, sqeu-
clidean, yule)

An example of Minkowski distance defined in RAVEN is provided below:

<Simulation>
...
<Metrics>

...
<DTW name="example">

<order>0</order>
<localDistance>euclidean</localDistance>

</DTW>
...

</Metrics>
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...
</Simulation>

17.5 CDFAreaDifference

This calculates the difference in area between the two CDFs. This metric supports using distribu-
tions as input. Other inputs are converted to a CDF.

CDF area difference =

∫ ∞
−∞
‖CDFa(x)− CDFb(x)‖dx (63)

This metric has the same units as x. The closer the number is to zero, the closer the match. A
perfect match would be 0.0.

An example is provided below:

<Simulation>
...
<Metrics>

...
<CDFAreaDifference name="cdf_diff" />
...

</Metrics>
...

</Simulation>

17.6 PDFCommonArea

This calculates the common area between the two PDFs. The higher the value the closer the PDFs
are. This metric supports distributions as inputs. Other inputs are converted to a PDF.

PDF common area =

∫ ∞
−∞

min(PDFa(x), PDFb(x))dx (64)

A perfect match would be 1.0.

An example is provided below:
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<Simulation>
...
<Metrics>

...
<PDFCommonArea name="pdf_area" />
...

</Metrics>
...

</Simulation>

17.7 Pairwise Metric

This calculates the pairwise distance or kernel between each row of the two collections of inputs.
This metric can be only used in the DataMining post-processor.

17.7.1 Polynomial

Compute the polynomial kernel between X and Y :

K(X, Y ) = (gamma < X, Y > +coef0)degree (65)

This metric interface directly with the metric available within Scikit-Learn. The specifications of
this metric must be defined within the XML block <PairwiseMetric>. This XML node needs
to contain the following subnode:

• <metricType>kernel|Polynomial</metricType>, vertical bar (|) separated
string, required field.

In addition to this XML subnode, the users can also specify the following subnodes:

• <degree>, integer, optional parameter, default ‘3’

• <gamma>, float, optional parameter, default 1.0/numberColumnsInX

• <coef0>, integer, optional parameter, default ‘1’
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17.7.2 additive chi2

Computes the additive chi-squared kernel between observations inX and Y The chi-squared kernel
is computed between each pair of rows in X and Y . X and Y have to be non-negative. This kernel
is most commonly applied to histograms. The chi-squared kernel is given by:

K(x, y) = −Sum[(x− y)2/(x+ y)] (66)

This metric interface directly with the metric available within Scikit-Learn. The specifications
of this metric must be defined within the XML block <PairwiseMetric>. This XML node
needs to contain the following subnode:

• <metricType>kernel|additive chi2</metricType>, vertical bar (|) separated
string, required field.

17.7.3 chi2

Computes the exponential chi-squared kernel between observations in X and Y The chi-squared
kernel is computed between each pair of rows in X and Y . X and Y have to be non-negative. This
kernel is most commonly applied to histograms. The chi-squared kernel is given by:

K(x, y) = exp(−gamma ∗ Sum[(x− y)2/(x+ y)]) (67)

This metric interface directly with the metric available within Scikit-Learn. The specifications
of this metric must be defined within the XML block <PairwiseMetric>. This XML node
needs to contain the following subnode:

• <metricType>kernel|chi2</metricType>, vertical bar (|) separated string, re-
quired field.

In addition to this XML subnode, the users can also specify the following subnodes:

• <gamma>, float, optional parameter, default ‘1’

17.7.4 cosine similarity

Compute the cosine similarity between X and Y :

K(X, Y ) =< X, Y > /(||X|| ∗ ||Y ||) (68)
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This metric interface directly with the metric available within Scikit-Learn. The specifications
of this metric must be defined within the XML block <PairwiseMetric>. This XML node
needs to contain the following subnode:

• <metricType>kernel|cosine similarity</metricType>, vertical bar (|) sep-
arated string, required field.

17.7.5 laplacian

Computes the laplacian kernel between observations in X and Y The laplacian kernel is given by:

K(x, y) = exp(−gamma ∗ ||x− y||1) (69)

for each pair of rows x in X and y in Y . This metric interface directly with the metric available
within Scikit-Learn. The specifications of this metric must be defined within the XML block
<PairwiseMetric>. This XML node needs to contain the following subnode:

• <metricType>kernel|laplacian</metricType>, vertical bar (|) separated string,
required field.

In addition to this XML subnode, the users can also specify the following subnodes:

• <gamma>, float, optional parameter, default 1.0/numberColumnsInX

17.7.6 linear

computes the linear kernel between X and Y

K(X, Y ) = XT ∗ Y (70)

This metric interface directly with the metric available within Scikit-Learn. The specifications of
this metric must be defined within the XML block <PairwiseMetric>. This XML node needs
to contain the following subnode:

• <metricType>kernel|linear</metricType>, vertical bar (|) separated string,
required field.
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17.7.7 rbf

Computes the laplacian kernel between observations in X and Y The laplacian kernel is given by:

K(x, y) = exp(−gamma ∗ ||x− y||2) (71)

for each pair of rows x in X and y in Y . This metric interface directly with the metric available
within Scikit-Learn. The specifications of this metric must be defined within the XML block
<PairwiseMetric>. This XML node needs to contain the following subnode:

• <metricType>kernel|rbf</metricType>, vertical bar (|) separated string, re-
quired field.

• <gamma>, float, optional parameter, default 1.0/numberColumnsInX

17.7.8 sigmoid

Compute the sigmoid kernel between X and Y :

K(X, Y ) = tanh(gamma < X, Y > +coef0) (72)

This metric interface directly with the metric available within Scikit-Learn. The specifications of
this metric must be defined within the XML block <PairwiseMetric>. This XML node needs
to contain the following subnode:

• <metricType>kernel|sigmoid</metricType>, vertical bar (|) separated string,
required field.

• <gamma>, float, optional parameter, default 1.0/numberColumnsInX

• <coef0>, integer, optional parameter, default ‘1’

17.7.9 Distance Based Metric

This metric interface directly with the metric available within Scipy or Scikit-Learn. The specifi-
cations of this metric must be defined within the XML block <PairwiseMetric>. This XML
node needs to contain the following subnode:

• <metricType>pairwise|‘metric’</metricType>, vertical bar (|) separated
string, required field.
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Note: ‘metric’, the distance metric to use, this can be ‘braycurtis’, ‘canberra’, ‘chebyshev’,
‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘matching’, ‘minkowski’,
‘rogerstanimoto’, ‘russellrao’, ‘sokalmichener’, ‘sokalsneath’, ‘yule’, ‘manhatten’. The definition
for each metric can be found in previous sections.

In addition to this XML subnode, the users can also specify the corresponding parameters for
each ‘metric’ according to previous sections.
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18 Steps

The core of the RAVEN calculation flow is the Step system. The Step is in charge of assembling
different entities in RAVEN (e.g. Samplers, Models, Databases, etc.) in order to perform a task
defined by the kind of step being used. A sequence of different Steps represents the calculation
flow.

Before analyzing each Step type, it is worth to 1) explain how a general Step entity is orga-
nized, and 2) introduce the concept of step “role” . In the following example, a general example of
a Step is shown below:

<Simulation>
...
<Steps>

...
<WhatEverStepType name='aName'>

<Role1 class='aMainClassType'
type='aSubType'>userDefinedName1</Role1>

<Role2 class='aMainClassType'
type='aSubType'>userDefinedName2</Role2>

<Role3 class='aMainClassType'
type='aSubType'>userDefinedName3</Role3>

<Role4 class='aMainClassType'
type='aSubType'>userDefinedName4</Role4>

</WhatEverStepType>
...

</Steps>
...

</Simulation>

As shown above each Step consists of a list of entities organized into “Roles.” Each role represents
a behavior the entity (object) will assume during the evaluation of the Step. In RAVEN, several
different roles are available:

• Input represents the input of the Step. The allowable input objects depend on the type of
Model in the Step.

• Output defines where to collect the results of an action performed by the Model. It is
generally one of the following types: DataObjects, Databases, or OutStreams.

• Model represents a physical or mathematical system or behavior. The object used in this
role defines the allowable types of Inputs and Outputs usable in this step.
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• Sampler defines the sampling strategy to be used to probe the model.
It is worth to mention that, when a sampling strategy is employed, the “variables” defined
in the <variable> blocks are going to be directly placed in the Output objects of type
DataObjects and Databases).

• Function is an extremely important role. It introduces the capability to perform pre or post
processing of Model Inputs and Outputs. Its specific behavior depends on the Step is using
it.

• ROM defines an acceleration Reduced Order Model to use for a Step.

• SolutionExport represents the container of the eventual output of a step. For the moment,
there are two uses: 1) A Step is employing the search of the Limit Surface (LS), through the
class of Adaptive Samplers); in this case, it contains the coordinates of the LS in the input
space; and 2) Some of the post-processors employ clustering algorithms and the cluster
centers will be stored in this file with the input being the cluster labels.

Depending on the Step type, different combinations of these roles can be used. For this reason, it
is important to analyze each Step type in details.

The available steps are the following

• SingleRun (see Section 18.1)

• MultiRun(see Section 18.2)

• IOStep(see Section 18.3)

• RomTrainer(see Section 18.4)

• PostProcess(see Section 18.5)

18.1 SingleRun

The SingleRun is the simplest step the user can use to assemble a calculation flow: perform a
single action of a Model. For example, it can be used to run a single job (Code Model) and collect
the outcome(s) in a “DataObjects” object of type Point or History (see Section 12 for more details
on available data representations).

The specifications of this Step must be defined within a <SingleRun> XML block. This
XML node has the following definable attributes:

• name, required string attribute, user-defined name of this Step. Note: This name is used
to reference this specific entity in the <RunInfo> block, under the <Sequence> node. If
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the name of this Step is not listed in the <Sequence> block, its action is not going to be
performed.

• repeatFailureRuns, optional integer attribute, this optional attribute could be used to
set a certain number of repetitions that need to be performed when a realization (i.e. run)
fails (e.g. repeatFailureRuns = “3”, 3 tries).

• pauseAtEnd, optional boolean/string attribute (case insensitive), if True (True values =
True, yes, y, t), the code will pause at the end of the step, waiting for a user signal to continue.
This is used in case one or more of the Outputs are of type OutStreams. For example, it
can be used when an OutStreams of type Plot is output to the screen. Thus, allowing the
user to interact with the Plot (e.g. rotate the figure, change the scale, etc.).
Default: False.

• clearRunDir, optional boolean attribute, indicates whether the run directory should be
cleared (removed) before beginning the Step calculation. The run directory has the same
name as the <Step> and is located within the <WorkingDir>. Note this directory is
only used for a <Step> with certain <Model> types, such as <Code>.

In the <SingleRun> input block, the user needs to specify the objects needed for the different
allowable roles. This step accepts the following roles:

• <Input>, string, required parameter, names an entity (defined elsewhere in the RAVEN
input) that will be used as input for the model specified in this step. This XML node accepts
the following attributes:

– class, required string attribute, main object class type. This string corresponds to the
tag of the main object’s type used in the input. For example, ’Files’, ’DataObjects’,
’Databases’, etc.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the main object class. For example, if the class attribute is
’DataObjects’, the type attribute might be ’PointSet’. Note: The class
’Files’ has no type (i.e. type=’’).

Note: The class and, consequently, the type usable for this role depends on the particular
<Model> being used. In addition, the user can specify as many <Input> nodes as needed.

• <Model>, string, required parameter, names an entity defined elsewhere in the input file
to be used as a model for this step. This XML node accepts the following attributes:

– class, required string attribute, main object class type. For this role, only ’Models’
can be used.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the Models object class. For example, the type attribute might
be ’Code’, ’ROM’, etc.
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• <Output>, string, required parameter names an entity defined elsewhere in the input to
use as the output for the Model. This XML node recognizes the following attributes:

– class, required string attribute, main object class type. For this role, only ’DataObjects’,
’Databases’, and ’OutStreams’ can be used.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the main object class. For example, if the class attribute is
’DataObjects’, the type attribute might be ’PointSet’.

Note: The number of <Output> nodes is unlimited.

Example:

<Steps>
...
<SingleRun name='StepName' pauseAtEnd='false'>

<Input class='Files'
type=''>anInputFile.i</Input>

<Input class='Files' type=''>aFile</Input>
<Model class='Models' type='Code'>aCode</Model>
<Output class='Databases' type='HDF5'>aDatabase</Output>
<Output class='DataObjects'

type='History'>aData</Output>
</SingleRun>
...

</Steps>

18.2 MultiRun

The MultiRun step allows the user to assemble the calculation flow of an analysis that requires
multiple “runs” of the same model. This step is used, for example, when the input (space) of the
model needs to be perturbed by a particular sampling strategy.

The specifications of this type of step must be defined within a <MultiRun> XML block.
This XML node recognizes the following list of attributes:

• name, required string attribute, user-defined name of this Step. Note: As with other ob-
jects, this name is used to reference this specific entity in the <RunInfo> block, under the
<Sequence> node. If the name of this Step is not listed in the <Sequence> block, its
action is not going to be performed.

• re-seeding, optional integer/string attribute, this optional attribute could be used to
control the seeding of the random number generator (RNG). If inputted, the RNG can be
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reseeded. The value of this attribute can be: either 1) an integer value with the seed to be
used (e.g. re-seeding = “20021986”), or 2) string value named “continue” where the
RNG is not re-initialized

• repeatFailureRuns, optional integer attribute, this optional attribute could be used to
set a certain number of repetitions that need to be performed when a realization (i.e. run)
fails (e.g. repeatFailureRuns = “3”, 3 tries).

• pauseAtEnd, optional boolean/string attribute, if True (True values = True, yes, y, t), the
code will pause at the end of the step, waiting for a user signal to continue. This is used in
case one or more of the Outputs are of type OutStreams. For example, it can be used when
an OutStreams of type Plot is output to the screen. Thus, allowing the user to interact with
the Plot (e.g. rotate the figure, change the scale, etc.).

• sleepTime, optional float attribute, in this attribute the user can specify the waiting time
(seconds) between two subsequent inquiries of the status of the submitted job (i.e. check if
a run has finished).
Default: 0.05.

In the <MultiRun> input block, the user needs to specify the objects that need to be used for the
different allowable roles. This step accepts the following roles:

• <Input>, string, required parameter, names an entity to be used as input for the model
specified in this step. This XML node accepts the following attributes:

– class, required string attribute, main object class type. This string corresponds to the
tag of the main object’s type used in the input. For example, ’Files’, ’DataObjects’,
’Databases’, etc.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’DataObjects’, the type attribute might be ’PointSet’. Note: The class
’Files’ has no type (i.e. type=’’).

Note: The class and, consequently, the type usable for this role depend on the particular
<Model> being used. The user can specify as many <Input> nodes as needed.

• <Model>, string, required parameter names an entity defined elsewhere in the input that
will be used as the model for this step. This XML node recognizes the following attributes:

– class, required string attribute, main object class type. For this role, only ’Models’
can be used.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the Models object class. For example, the type attribute might
be ’Code’, ’ROM’, etc.

• <Sampler>, string, optional parameter names an entity defined elsewhere in the input file
to be used as a sampler. As mentioned in Section 10, the Sampler is in charge of defining the
strategy to characterize the input space. This XML node recognizes the following attributes:
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– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used. Only ’Samplers’ can be used for this role.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the Samplers object class. For example, the type attribute
might be ’MonteCarlo’, ’Adaptive’, ’AdaptiveDET’, etc. See Section 10
for all the different types currently supported.

• <Optimizer>, string, optional parameter names an entity defined elsewhere in the input
file to be used as an optimizer. As mentioned in Section 11, the Optimizer is in charge of
defining the strategy to optimize an user-specified variable. This XML node recognizes the
following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used. Only ’Optimizers’ can be used for this role.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the Optimizers object class. For example, the type attribute
might be ’SPSA’, etc. See Section 11 for all the different types currently supported.

Note: For Multi-Run, either one <Sampler> or one <Optimizer> is required.

• <SolutionExport>, string, optional parameter identifies an entity to be used for ex-
porting key information coming from the Sampler or Optimizer object during the simula-
tion. This XML node accepts the following attributes:

– class, required string attribute, main object class type. This string corresponds to the
tag of the main object’s type used in the input. For this role, only ’DataObjects’
can be used.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the DataObjects object class. For example, the type at-
tribute might be ’PointSet’, ’HistorySet’, etc.
Note: Whether or not it is possible to export the Sampler solution depends on the
type. Currently, only the Samplers in the ’Adaptive’ category and all Optimiz-
ers can export their solution into a <SolutionExport> entity. For Samplers, the
<Outputs> node in the DataObjects needs to contain the goal <Function>
name. For example, if <Sampler> is of type ’Adaptive’, the <SolutionExport>
needs to be of type ’PointSet’ and it will contain the coordinates, in the input space,
that belong to the “Limit Surface”. For Optimizers, the <SolutionExport> needs
to be of type ’HistorySet’ and it will contains all the optimization trajectories,
each as a history, that record how the variables are updated along each optimization
trajectory.

• <Output>, string, required parameter identifies an entity to be used as output for this step.
This XML node recognizes the following attributes:
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– class, required string attribute, main object class type. This string corresponds to the
tag of the main object’s type used in the input. For this role, only ’DataObjects’,
’Databases’, and ’OutStreams’ may be used.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’DataObjects’, the type attribute might be ’PointSet’.

Note: The number of <Output> nodes is unlimited.

Example:

<Steps>
...
<MultiRun name='StepName1' pauseAtEnd='False' sleepTime='0.01'>

<Input class='Files' type=''>anInputFile.i</Input>
<Input class='Files' type=''>aFile</Input>
<Sampler class='Samplers' type = 'Grid'>aGridName</Sampler>
<Model class='Models' type='Code'>aCode</Model>
<Output class='Databases' type='HDF5'>aDatabase</Output>
<Output class='DataObjects' type='History'>aData</Output>

</MultiRun >
<MultiRun name='StepName2' pauseAtEnd='True' sleepTime='0.02'>

<Input class='Files' type=''>anInputFile.i</Input>
<Input class='Files' type=''>aFile</Input>
<Sampler class='Samplers' type='Adaptive'>anAS</Sampler>
<Model class='Models' type='Code'>aCode</Model>
<Output class='Databases' type='HDF5'>aDatabase</Output>
<Output class='DataObjects' type='History'>aData</Output>
<SolutionExport class='DataObjects' type='PointSet'>

aTPS
</SolutionExport>

</MultiRun>
...

</Steps>

18.3 IOStep

As the name suggests, the IOStep is the step where the user can perform input/output operations
among the different I/O entities available in RAVEN. This step type is used to:

• construct/update a Database from a DataObjects object, and vice versa;
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• construct/update a DataObject from a CSV file contained in a directory;

• construct/update a Database or a DataObjects object from CSV files contained in a directory;

• stream the content of a Database or a DataObjects out through an OutStream object (see
section 14);

• store/retrieve a ROM or ExternalModel to/from an external File using Pickle module of
Python. This function can be used to create and store ExternalModel or mathematical model
(ROM) of fast solution trained to predict a response of interest of a physical system. These
models can be recovered in other simulations or used to evaluate the response of a physical
system in a Python program by the implementing of the Pickle module.

• export a ROM or ExternalModel to an external FMI/FMU File using the RAVEN native
FMI/FMU exporting capability

The specifications of this type of step must be defined within an <IOStep> XML block. This
XML node can accept the following attributes:

• name, required string attribute, user-defined name of this Step. Note: As for the other
objects, this is the name that can be used to refer to this specific entity in the <RunInfo>
block, under the <Sequence> node.

• pauseAtEnd, optional boolean/string attribute (case insensitive), if True (True values =
True, yes, y, t), the code will pause at the end of the step, waiting for a user signal to continue.
This is used in case one or more of the Outputs are of type OutStreams. For example, it
can be used when an OutStreams of type Plot is output to the screen. Thus, allowing the
user to interact with the Plot (e.g. rotate the figure, change the scale, etc.).
Default: False.

• fromDirectory, optional string attribute, The directory where the input files can be
found when loading data from a file or series of files directly into a DataObject.

In the <IOStep> input block, the user specifies the objects that need to be used for the different
allowable roles. This step accepts the following roles:

• <Input>, string, required parameter, names an entity that is going to be used as a source
(input) from which the information needs to be extracted. This XML node recognizes the
following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. As already mentioned, the allowable
main classes are ’DataObjects’, ’Databases’, ’Models’ and ’Files’.

– type, required string attribute, the actual entity type. This attribute needs to spec-
ify the object type within the main object class. For example, if the class attribute
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is ’DataObjects’, the type attribute might be ’PointSet’. If the class at-
tribute is ’Models’, the type attribute must be ’ROM’ or ’ExternalModel’
and if the class attribute is ’Files’, the type attribute must be ’ ’

• <Output>, string, required parameter names an entity to be used as the target (output)
where the information extracted in the input will be stored. This XML node needs to contain
the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. The allowable main classes are
’DataObjects’, ’Databases’, ’OutStreams’, ’Models’ and ’Files’.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’OutStreams’, the type attribute might be ’Plot’.

This step acts as a “transfer network” among the different RAVEN storing (or streaming) objects.
The number of <Input> and <Output> nodes is unlimited, but should match. This step assumes
a 1-to-1 mapping (e.g. first <Input> is going to be used for the first <Output>, etc.).
Note: This 1-to-1 mapping is not present when <Output> nodes are of class
’OutStreams’, since OutStreams objects are already linked to a Data object in the relative
RAVEN input block. In this case, the user needs to provide all of the “DataObjects” objects linked
to the OutStreams objects (see the example below) in the <Input> nodes.

<Steps>
...
<IOStep name='OutStreamStep'>

<Input class='DataObjects'
type='HistorySet'>aHistorySet</Input>

<Input class='DataObjects' type='PointSet'>aTPS</Input>
<Output class='OutStreams' type='Plot'>plot_hist
</Output>
<Output class='OutStreams' type='Print'>print_hist
</Output>
<Output class='OutStreams' type='Print'>print_tps
</Output>
<Output class='OutStreams' type='Print'>print_tp
</Output>

</IOStep>
...
<IOStep name='PushDataObjectsIntoDatabase'>

<Input class='DataObjects'
type='HistorySet'>aHistorySet</Input>

<Input class='DataObjects' type='PointSet'>aTPS</Input>
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<Output class='Databases' type='NetCDF'>aDatabase</Output>
<Output class='Databases' type='HDF5'>aDatabase</Output>

</IOStep>
...

</Steps>

A summary of the objects that can go from/to other objects is shown in Table 13:

<Input> <Output> Resulting behavior
DataObject Database Store to On-Disk Database

OutStream Print or Plot Data
Database DataObject Load from On-Disk Database
File DataObject Load from On-Disk CSV

ExternalModel Load On-Disk Serialized ExternalModel
ROM Load On-Disk Serialized ROM

ROM DataObject Print ROM Metadata to CSV, XML
File Serialize ROM to Disk

ExternalModel File Serialize ExternalModel to Disk
File If ext is fmu (myOut.fmu) Serialize ExternalModel to FMU

Table 13: Object options for <IOStep> operations

As already mentioned, the <IOStep> can be used to export (serialize) a ROM or Exter-
nalModel in a binary file. To use the exported ROM or ExternalModel in an external Python
(or Python-compatible) code, the RAVEN framework must be present in end-user machine. The
main reason for this is that the Pickle module uses the class definitions to template the reconstruc-
tion of the serialized object in memory.
In order to faciliate the usage of the serialized ROM or ExternalModel in an external Python code,
the RAVEN team provided a utility class contained in :

./raven/scripts/externalROMloader.py

An example of how to use this utility class to load and use a serialized ROM (already trained) or
ExternalModel is reported below: Example Python Function:

from externalROMloader import ravenROMexternal
import numpy as np
rom = ravenROMexternal("path_to_pickled_rom/ROM.pk",

"path_to_RAVEN_framework")
request = {"x1":np.atleast_1d(Value1),"x2":np.atleast_1d(Value2)}
eval = rom.evaluate(request)
print str(eval)
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The module above can also be used to evaluate a ROM or ExternalModel from input file:

python ./raven/scripts/externalROMloader.py input_file.xml

The input file has the following format:

<?xml version="1.0" ?>
<external_rom>

<RAVENdir>path_to_RAVEN_framework</RAVENdir>
<ROMfile>ath_to_pickled_rom/ROM.pk</ROMfile>
<evaluate>

<x1>0. 1. 0.5</x1>
<x2>0. 0.4 2.1</x2>

</evaluate>
<inspect>true</inspect>
<outputFile>output_file_name</outputFile>

</external_rom>

The output of the above command would look like as follows:

<?xml version="1.0" ?>
<UROM>

<settings>
<Target>ans</Target>
<name>UROM</name>
<IndexSet>TensorProduct</IndexSet>
<Features>[u'x1' u'x2']</Features>
<PolynomialOrder>2</PolynomialOrder>

</settings>
<evaluations>

<evaluation realization="1">
<x2>0.0</x2>
<x1>0.0</x1>
<ans>-3.1696867353e-14</ans>

</evaluation>
<evaluation realization="2">

<x2>0.4</x2>
<x1>1.0</x1>
<ans>1.4</ans>

</evaluation>
<evaluation realization="3">

<x2>2.1</x2>
<x1>0.5</x1>
<ans>2.6</ans>
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</evaluation>
</evaluations>

</UROM>

18.4 RomTrainer

The RomTrainer step type performs the training of a Reduced Order Model (aka Surrogate Mode).
The specifications of this step must be defined within a <RomTrainer> block. This XML node
accepts the attributes:

• name, required string attribute, user-defined name of this step. Note: As for the other
objects, this is the name that can be used to refer to this specific entity in the <RunInfo>
block under <Sequence>.

In the <RomTrainer> input block, the user will specify the objects needed for the different
allowable roles. This step accepts the following roles:

• <Input>, string, required parameter names an entity to be used as a source (input) from
which the information needs to be extracted. This XML node accepts the following at-
tributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. The only allowable main class is
’DataObjects’.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, the type attribute might be
’PointSet’. Note: Depending on which type of ’DataObjects’ is used, the
ROM will be a Static or Dynamic (i.e. time-dependent) model. This implies that both
’PointSet’ and ’HistorySet’ are allowed (but not ’DataSet’ yet).

• <Output>, string, required parameter, names a ROM entity that is going to be trained.
This XML node recognizes the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main objects type used in the input. The only allowable main class is
’Models’.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the main object class. The only type accepted here is, currently,
’ROM’.

Example:
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<Steps>
...
<RomTrainer name='aStepNameStaticROM'>

<Input class='DataObjects' type='PointSet'>aPS</Input>
<Output class='Models' type='ROM' >aROM</Output>

</RomTrainer>
<RomTrainer name='aStepNameTimeDependentROM'>
<Input class='DataObjects' type='HistorySet'>aHS</Input>
<Output class='Models' type='ROM'

>aTimeDepROM</Output>
</RomTrainer>
...

</Steps>

18.5 PostProcess

The PostProcess step is used to post-process data or manipulate RAVEN entities. It is aimed at
performing a single action that is employed by a Model of type PostProcessor.

The specifications of this type of step is defined within a <PostProcess> XML block. This
XML node specifies the following attributes:

• name, required string attribute, user-defined name of this Step. Note: As for the other
objects, this is the name that is used to refer to this specific entity in the <RunInfo> block
under the <Sequence> node.

• pauseAtEnd, optional boolean/string attribute (case insensitive), if True (True values =
True, yes, y, t), the code will pause at the end of the step, waiting for a user signal to continue.
This is used in case one or more of the Outputs are of type OutStreams. For example, it
can be used when an OutStreams of type Plot is output to the screen. Thus, allowing the
user to interact with the Plot (e.g. rotate the figure, change the scale, etc.).
Default: False.

In the <PostProcess> input block, the user needs to specify the objects needed for the different
allowable roles. This step accepts the following roles:

• <Input>, string, required parameter, names an entity to be used as input for the model
specified in this step. This XML node accepts the following attributes:

– class, required string attribute, main object class type. This string corresponds to the
tag of the main object’s type used in the input. For example, ’Files’, ’DataObjects’,
’Databases’, etc.
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– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’DataObjects’, the type attribute might be ’PointSet’. Note: The class
’Files’ has no type (i.e. type=’’).

Note: The class and, consequently, the type usable for this role depends on the particular
type of PostProcessor being used. In addition, the user can specify as many <Input> nodes
as needed by the model.

• <Model>, string, required parameter, names an entity to be used as a model for this step.
This XML node recognizes the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input. For this role, only ’Models’ can
be used.

– type, required string attribute, the actual entity type. This attribute needs to specify
the object type within the ’Models’ object class. The only type accepted here is
’PostProcessor’.

• <Output>, string, required/optional parameter, names an entity to be used as output for
the PostProcessor. The necessity of this XML block and the types of entities that can be used
as output depend on the type of PostProcessor that has been used as a Model (see section
15.5). This XML node specifies the following attributes:

– class, required string attribute, main object class type. This string corresponds to
the tag of the main object’s type used in the input.

– type, required string attribute, the actual entity type. This attribute specifies the
object type within the main object class. For example, if the class attribute is
’DataObjects’, the type attribute might be ’PointSet’.

Note: The number of <Output> nodes is unlimited.

Example:

<Steps>
...
<PostProcess name='PP1'>

<Input class='DataObjects' type='PointSet' >aData</Input>
<Model class='Models' type='PostProcessor'>aPP</Model>
<Output class='Files' type=''>anOutputFile</Output>

</PostProcess>
...

</Steps>
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19 Existing Interfaces

19.1 Generic Interface

The GenericCode interface is meant to handle a wide variety of generic codes that take straight-
forward input files and produce output CSV files. There are some limitations for this interface. If
a code:

• accepts a keyword-based input file with no cross-dependent inputs,

• has no more than one filetype extension per command line flag,

• and returns a CSV with the input parameters and output parameters,
the GenericCode interface should cover the code for RAVEN.

The GenericCode interface leverages a wildcard-based approach to editing input files. Using
the special wildcard format $RAVEN-$, RAVEN parses text-based inputs and replaces the wild-
cards with sampled values. For example, consider RAVEN sampling variables named initial velocity
and initial angle. Assume we’re using a projectile tracking model with keyword based entry
input files; for example,

initial_height = 0 # starting height, m
initial_angle = 35 # starting angle, degrees
initial_velocity = 40 # starting velocity, m/s
gravity = 9.8 # accel due to grav, m/s/s
auxfile = gen.two # additional properties file
case = myOut # output name (adds .csv)

Since we want to sample initial velocity and initial angle, we create a new template
input and replace the values where samples should go with the wildcard and the variable name:

initial_height = 0 # starting height, m
initial_angle = $RAVEN-initial_angle$ # starting angle, degrees
initial_velocity = $RAVEN-initial_velocity$ # starting velocity, m/s
gravity = 9.8 # accel due to grav, m/s/s
auxfile = gen.two # additional properties file
case = myOut # output name (adds .csv)

See more discussion of replacing the output case and auxiliary file names below. When RAVEN
samples values for the initial height and velocity, it will generate a new input file with those values
in place, for example,

initial_height = 0 # starting height, m
initial_angle = 22.7589 # starting angle, degrees
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initial_velocity = 47.2076 # starting velocity, m/s
gravity = 9.8 # accel due to grav, m/s/s
auxfile = gen.two # additional properties file
case = myOut # output name (adds .csv)

If a code contains cross-dependent data, the generic interface is not able to edit the correct
values. For example, if a geometry-building script specifies inner radius, outer radius, and thick-
ness, the generic interface cannot calculate the thickness given the outer and inner radius, or vice
versa. In this case, the function method explained in the Samplers (see 10) and Optimizers (see 11)
sections can be used.

An example of the code interface is shown here. The input parameters are read from the input
files gen.one and gen.two respectively. The code is run using python, so that is part of the
<clargs> node with the type equal ’prepend’. The command line entry to normally run the
code is

python poly_inp.py -i gen.one -a gen.two -o myOut

and produces the output myOut.csv.

Example:

<Code name="poly" subType="GenericCode">
<executable>GenericInterface/poly_inp.py</executable>
<inputExtentions>.one,.two</inputExtentions>
<clargs type='prepend' arg='python'/>
<clargs type='input' arg='-i' extension='.one'/>
<clargs type='input' arg='-a' extension='.two'/>
<clargs type='output' arg='-o'/>

</Code>

If a code doesn’t accept necessary Raven-editable auxiliary input files or output filenames
through the command line, the GenericCode interface can also edit the input files and insert the
filenames there. For example, in the previous example, say instead of -a gen.two and -o
myOut in the command line, gen.one has the following lines:

...
auxfile = gen.two
case = myOut
...

Then, our example XML for the code would be

Example:
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<Code name="poly" subType="GenericCode">
<executable>GenericInterface/poly_inp.py</executable>
<inputExtentions>.one,.two</inputExtentions>
<clargs type='prepend' arg='python'/>
<clargs type='input' arg='-i' extension='.one'/>
<fileargs type='input' arg='two' extension='.two'/>
<fileargs type='output' arg='out'/>

</Code>

and the corresponding template input file lines would be changed to read

...
auxfile = $RAVEN-two$
case = $RAVEN-out$
...

If a code has hard-coded output file names that are not changeable, the GenericCode interface
can be invoked using the <outputFile> node in which the output file name (CSV only) must
be specified. For example, in the previous example, say instead of -a gen.two and -o myOut
in the command line, the code always produce a CSV file named “fixed output.csv”;

Then, our example XML for the code would be

Example:

<Code name="poly" subType="GenericCode">
<executable>GenericInterface/poly_inp.py</executable>
<inputExtentions>.one,.two</inputExtentions>
<clargs type='prepend' arg='python'/>
<clargs type='input' arg='-i' extension='.one'/>
<fileargs type='input' arg='two' extension='.two'/>
<outputFile>fixed_output.csv</outputFile>

</Code>

In addition, the “wild-cards” above can contain two special and optional symbols:

• :, that defines an eventual default value;

• |, that defines the format of the value. The Generic Interface currently supports the following
formatting options (* in the examples means blank space):

– plain integer, in this case the value that is going to be replaced by the Generic Interface,
will be left-justified with a string length equal to the integer value specified here (e.g.
“|6”, the value is left-justified with a string length of 6);
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– d, signed integer decimal, the value is going to be formatted as an integer (e.g. if
the value is 9 and the format “|10d”, the replaced value will be formatted as follows:
“*********9”);

– e, floating point exponential format (lowercase), the value is going to be formatted as
a float in scientific notation (e.g. if the value is 9.1234 and the format “|10.3e”, the
replaced value will be formatted as follows: “*9.123e+00” );

– E, floating point exponential format (uppercase), the value is going to be formatted as
a float in scientific notation (e.g. if the value is 9.1234 and the format “|10.3E”, the
replaced value will be formatted as follows: “*9.123E+00” );

– f or F, floating point decimal format, the value is going to be formatted as a float in
decimal notation (e.g. if the value is 9.1234 and the format “|10.3f”, the replaced value
will be formatted as follows: “*****9.123” );

– g, floating point format. Uses lowercase exponential format if exponent is less than -4
or not less than precision, decimal format otherwise (e.g. if the value is 9.1234 and the
format “|10.3g”, the replaced value will be formatted as follows: “******9.12” );

– G, floating point format. Uses uppercase exponential format if exponent is less than -4
or not less than precision, decimal format otherwise (e.g. if the value is 0.000009 and
the format “|10.3G”, the replaced value will be formatted as follows: “*****9E-06” ).

—

For example:

...
auxfile = $RAVEN-two:3$
case = $RAVEN-out:5|10$
...

Where,

• :, in case the variable “two” is not defined in the RAVEN XML input file, the Parser, will
replace it with the value “3”.;

• |, the value that is going to be replaced by the Generic Interface, will be left- justified with
a string length of “10”;

19.2 RAVEN Interface

The RAVEN interface is meant to provide the possibility to execute a RAVEN input file driving a
set of SLAVE RAVEN calculations. For example, if the user wants to optimize the parameters of a
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surrogate model (e.g. minimizing the distance between the surrogate predictions and the real data),
he can achieve this task by setting up a RAVEN input file (master) that performs an optimization on
the feature space characterized by the surrogate model parameters, whose training and validation
assessment is performed in the SLAVE RAVEN runs.
There are some limitations for this interface:

• only one sub-level of RAVEN can be executed (i.e. if the SLAVE RAVEN input file contains
the run of another RAVEN SLAVE, the MASTER RAVEN will error out)

• only data from Outstreams of type Print can be collected by the MASTER RAVEN

• only a maximum of two Outstreams can be collected (1 PointSet and 1 HistorySet)

Like for every other interface, most of the RAVEN workflow stays the same independently of
which type of Model (i.e. Code) is used.
Similarly to any other code interface, the user provides paths to executables and aliases for sam-
pled variables within the <Models> block. The <Code> block will contain attributes name and
subType. name identifies that particular <Code> model within RAVEN, and subType speci-
fies which code interface the model will use (In this case subType=“RAVEN”). The <executable>
block should contain the absolute or relative (with respect to the current working directory) path
to the RAVEN framework script (raven framework).
In addition to the attributes and xml nodes reported above, the RAVEN accepts the following XML
nodes (required and optional):

• <outputDatabase>, string, required parameter will specify the <Database> that will
be loaded as outputs of the INNER RAVEN. If this node is not specifed, <outputExportOutStreams>
may be used instead.

• <outputExportOutStreams>, comma separated list, required parameter will specify
the <OutStreams> that will be loaded as outputs of the SLAVE RAVEN. Maximum two
<OutStreams> can be listed here (1 for PointSet and/or 1 for HistorySet).

• <conversion>, Node,optional parameter will specify details of conversion scripts to be
used in creating the inner RAVEN input file. This node contains the following nodes:

– <module>, Node, optional parameter a module for directly manipulating the xml
structure of perturbed input files. This can be used to modify the template input file in
arbitrary ways; however, it should be used with caution, and is considered an advanced
method. This node has the following attribute:

* source, string, required provides the path to the manipulation module including
the module file itself. The following method should be defined in order to perform
the input manipulation:
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· modifyInput, manipulates the input in arbitrary ways. This method takes two
arguments. The first is the root <Simulation> node of the template input
file that has already been modified with the perturbed samples (the object is a
Python xml.etree.ElementTree.Element object). The second input
is a dictionary with all the modification information used to previously modify
the template xml. The method should return the modified root. Example:

import xml.etree.ElementTree as ET
def modifyInput(root, modDict):

"""
Manipulate the inner RAVEN xml input.
@ In, root, ET.Element, perturbed RAVEN input
@ In, modDict, dictionary, modifications made to the input
@ Out, root, ET.Element, modified RAVEN input

"""
# adds the file <Input name='aux_inp'>auxfile.txt</Input> to the <Files> node
filesNode = root.find('Files')
newNode = ET.Element('Input')
newNode.text = 'auxfile.txt'
newNode.attrib['name'] = 'aux_inp'
filesNode.append(newNode)
return root

– <module>, Node, optional parameter contains the information about a specific con-
version module (python file). This node can be repeated multiple times. This node has
the following attribute:

* source, string, required provides the path to the conversion module including
the module file itself. There are two methods that can be placed in the conversion
module:

· manipulateScalarSampledVariables, a method that is aimed to manipulate
sampled variables and to create more in case needed. Example:

def manipulateScalarSampledVariables(sampledVariables):
"""
This method is aimed to manipulate scalar variables.
The user can create new variables based on the
variables sampled by RAVEN
@ In, sampledVariables, dict, dictionary of

sampled variables ({"var1":value1,"var2":value2})
@ Out, None, the new variables should be

added in the "sampledVariables" dictionary
"""
newVariableValue =

sampledVariables['Distributions|Uniform@name:a_dist|lowerBound']
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+ 1.0
sampledVariables['Distributions|Uniform@name:a_dist|upperBound'] =

newVariableValue
return

· convertNotScalarSampledVariables, a method that is aimed to convert not
scalar variables (e.g. 1D arrays) into multiple scalar variables (e.g. <constant>(s)
in a sampling strategy). This method is going to be required in case not scalar
variables are detected by the interface. Example:

def convertNotScalarSampledVariables(noScalarVariables):
"""
This method is aimed to convert not scalar
variables into multiple scalar variables. The user MUST
create new variables based on the not Scalar Variables
sampled (and passed in) by RAVEN

@ In, noScalarVariables, dict, dictionary of sampled
variables that are not scalar ({"var1":1Darray1,"var2":1Darray2})

@ Out, newVars, dict, the new variables that have
been created based on the not scalar variables
contained in "noScalarVariables" dictionary

"""
oneDimensionalArray =

noScalarVariables['temperatureHistory']
newVars = {}
for cnt, value in enumerate(oneDimensionalArray):
newVars['Samplers|MonteCarlo@name:myMC|constant'+

'@name=temperatureHistory'+str(cnt)] =
oneDimensionalArray[cnt]

return newVars

The <module> node also takes the following node:

* <variables>, comma-separated list, required provides a comma-separated list
of the variables from the MASTER RAVEN that need to be accessed by the con-
version script module. The variables listed here use the pipe naming system (un-
aliased names).

Code input example:

<Code name="RAVENrunningRAVEN" subType="RAVEN">
<executable>../../../raven_framework</executable>
<outputExportOutStreams>

HistorySetOutStream,PointSetOutStream
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</outputExportOutStreams>
<conversion>

<module source=/Users/username/whateverConversionModule.py>
<variables>a,b,x,y</variables>

</module>
</conversion>

</Code>

Like for every other interface, the syntax of the variable names is important to make the parser
understand how to perturb an input file.
For the RAVEN interface, a syntax inspired by the XPath nomenclature is used.

<Samplers>
<MonteCarlo name="MC_external">

...
<variable name="Models|ROM@subType:SciKitLearn@name:ROM1|C">

<distribution>C_distrib</distribution>
</variable>
<variable

name="Models|ROM@subType:SciKitLearn@name:ROM1|tol">
<distribution>toll_distrib</distribution>

</variable>
<variable name="Samplers|Grid@name:'+

'GridName|variable@name:var1|grid@construction:equal@type:value@steps">
<distribution>categorical_step_distrib</distribution>

</variable>
...

</MonteCarlo>
</Samplers>

In the above example, it can be inferred that each XML node (subnode) needs to be separated by
a “—” separator. In addition, every time an XML node has attributes, the user can specify them
using the “@” separator to specify a value for them. The first variable above will be pointing to
the following XML sub-node ( <C>):

<Models>
<ROM name="ROM1" subType="SciKitLearn">

...
<C>10.0</C>
...

</ROM>
</Models>
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The second variable above will be pointing to the following XML sub-node ( <tol>):

<Models>
<ROM name="ROM1" subType="SciKitLearn">

...
<tol>0.0001</tol>
...

</ROM>
</Models>

The third variable above will be pointing to the following XML attribute ( steps):

<Samplers>
<Grid name="GridName">

...
<variable name="var1">

...
<grid construction="equal" type="value" steps="1">0

1</grid>
...

</variable>

...
</MonteCarlo>

</Samplers>

The above nomenclature must be used for all the variables to be sampled and for the vari-
ables generated by the two methods contained, in case, in the module that gets specified by the
<conversionModule> in the <Code> section.
Finally the SLAVE RAVEN input file (s) must be “tagged” with the attribute type="raven" in
the Files section. For example,

<Files>
<Input name="slaveRavenInputFile" type="raven" >

test_rom_trainer.xml
</Input>

</Files>

19.2.1 ExternalXML and RAVEN interface

Care must be taken if the SLAVE RAVEN uses <ExternalXML> nodes. In this case, each file
containing external XML nodes must be added in the <Step> as an <Input> class Files to
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make sure it gets copied to the individual run directory. The type for these files can be anything,
with the exception of type ’raven’.

19.3 RELAP5 Interface

19.3.1 Sequence

In the <Sequence> section, the names of the steps declared in the <Steps> block should be
specified. As an example, if we called the first multirun “Grid Sampler” and the second multirun
“MC Sampler” in the sequence section we should see this:

<Sequence>Grid_Sampler,MC_Sampler</Sequence>

19.3.2 batchSize and mode

For the <batchSize> and <mode> sections please refer to the <RunInfo> block in the previ-
ous chapters.

19.3.3 RunInfo

After all of these blocks are filled out, a standard example RunInfo block may look like the example
below:

<RunInfo>
<WorkingDir>˜/workingDir</WorkingDir>
<Sequence>Grid_Sampler,MC_Sampler</Sequence>
<batchSize>1</batchSize>
<mode>mpi</mode>
<expectedTime>1:00:00</expectedTime>
<ParallelProcNumb>1</ParallelProcNumb>

</RunInfo>

19.3.4 Files

In the <Files> section, as specified before, all of the files needed for the code to run should be
specified. In the case of RELAP5, the files typically needed are:
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• RELAP5 Input file

• Table file or files that RELAP needs to run

Example:

<Files>
<Input name='tpfh2o' type=''>tpfh2o</Input>
<Input name='inputrelap.i' type=''>X10.i</Input>

</Files>

It is a good practice to put inside the working directory all of these files and also:

• the RAVEN input file

• the license for the executable of RELAP5

It is important to notice that the interface output collection relies on the MINOR EDITS.
The user must specify the MINOR EDITS block and those variables are the only one the
INTERFACE will read and make available to RAVEN. In addition, it is important to notice
that:

• the simulation time is stored in a variable called “time”;

• all the variables specified in the MINOR EDIT block are going to be converted us-
ing underscores (e.g. an edit such as 301 p 345010000 will be named in the con-
verted CSVs as p 345010000).In addition, if a variable contains spaces, the trailing
spaces are going to be removed and internal spaces are replaced with underscores (e.g.
HTTEMP113100812 will become HTTEMP 1131008 12.

Remember also that a RELAP5 simulation run is considered successful (i.e., the simulation did
not crash) if it terminates with the following message: Transient terminated by end of time step
cards or Transient terminated by trip

If the a RELAP5 simulation run stops with messages other than this one (e.g., “ Transient ter-
minated by failure.”) than the simulation is considered as crashed, i.e., it will not be saved. Hence,
it is strongly recommended to set up the RELAP5 input file so that the simulation exiting condi-
tions are set through control logic trip variables (e.g., simulation mission time and clad temperature
equal to clad failure temperature).
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19.3.5 Models

For the <Models> block here is a standard example of how it would look when using RELAP5
as the external model:

<Models>
<Code name='MyRELAP' subType='Relap5'>

<executable>˜/path_to_the_executable</executable>
</Code>

</Models>

In case the multi-deck approach is used in RELAP5, the interface is going to load all the outputs
in one CSV RAVEN is going to read. This means that all the decks’ outputs are going to be loaded
in one of the Output of RAVEN. In case the user wants to select the outputs coming from only one
deck, the following XML node needs to be specified:

• <outputDeckNumber>, integer, optional parameter, the deck number from which the
results needs to be retrieved.
Default: all.

In addition, if some command line parameters need to be passed to RELAP5
(e.g. “-r restartF ileWithCustomName.r”), the user might use (optionally) the <clargs>
XML nodes.

<Models>
<Code name='MyRELAP' subType='Relap5'>

<executable>˜/path_to_the_executable</executable>
<outputDeckNumber>1</outputDeckNumber>
<clargs type="text" arg="-r restartFileWithCustomName.r"/>

</Code>
</Models>

An additional feature of the RELAP5 Code interface is the possibility to specify operation
based on the value of user-inputted cards. For example, let’s assume the values in cards 1180801:2
and 1180802:2 must come from a calculation based on sampled variables (e.g. 20100154:2 and
20100155:2), the user can specify the following XML node:

• <operator>, XML node, optional parameter, The operator block. This XML node must
contain the following attribute:

– variables, comma separated list, required parameter, The list of variables (coming
from a Sampler) that will be used in the <expression> XML node.
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Within the <operator> the following XML sub-nodes must be specified:

– <expression>, string, required parameter, The string representing the expression
to be performed. The “card” (if needed to be used) must be identified with the token
%card% and it will be replaced with the values of the cards (specified in the XML node
<cards> ) from the original input file. In this expression, all the functions available
in the Python math module can be used (e.g. sqrt, exp, sin, etc.).

– <cards>, comma separated list, required parameter, The list of cards in the original
input file whose values need to be replaced by the value resulting from the expression
contained in <expression>.

Note: the user can specify as many <operator> nodes as needed.

An example is reported below:

<Models>
<Code name='MyRELAP' subType='Relap5'>

<executable>˜/path_to_the_executable</executable>
...
<operator variables="20100154:2,20100155:2">

<expression> %card%*20100155:2*2./20100155:2</expression>
<cards>1180801:2,1180802:2,1180901:3</cards>

</operator>
...

</Code>
</Models>

19.3.6 Distributions

The <Distribution> block defines the distributions that are going to be used for the sampling
of the variables defined in the <Samplers> block. For all the possibile distributions and all their
possible inputs please see the chapter about Distributions (see 9). Here we give a general example
of three different distributions:

<Distributions verbosity='debug'>
<Triangular name='BPfailtime'>

<apex>5.0</apex>
<min>4.0</min>
<max>6.0</max>

</Triangular>
<LogNormal name='BPrepairtime'>

<mean>0.75</mean>
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<sigma>0.25</sigma>
</LogNormal>
<Uniform name='ScalFactPower'>

<lowerBound>1.0</lowerBound>
<upperBound>1.2</upperBound>

</Uniform>
</Distributions>

It is good practice to name the distribution something similar to what kind of variable is going
to be sampled, since there might be many variables with the same kind of distributions but different
input parameters.

19.3.7 Samplers

In the <Samplers> block we want to define the variables that are going to be sampled. Example:
We want to do the sampling of 3 variables:

• Battery Fail Time

• Battery Repair Time

• Scaling Factor Power Rate

We are going to sample these 3 variables using two different sampling methods: grid and
MonteCarlo.

In RELAP5, the sampler reads the variable as, given the name, the first number is the card
number and the second number is the word number. In this example we are sampling:

• For card 0000588 (trip) the word 6 (battery failure time)

• For card 0000575 (trip) the word 6 (battery repair time)

• For card 20210000 (reactor power) the word 4 (reactor scaling factor)

We proceed to do so for both the Grid sampling and the MonteCarlo sampling.

<Samplers verbosity='debug'>
<Grid name='Grid_Sampler' >

<variable name='0000588:6'>
<distribution>BPfailtime</distribution>
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<grid type='value' construction='equal' steps='10'>0.0
28800</grid>

</variable>
<variable name='0000575:6'>

<distribution>BPrepairtime</distribution>
<grid type='value' construction='equal' steps='10'>0.0

28800</grid>
</variable>
<variable name='20210000:4'>

<distribution>ScalFactPower</distribution>
<grid type='value' construction='equal' steps='10'>1.0

1.2</grid>
</variable>

</Grid>
<MonteCarlo name='MC_Sampler'>

<samplerInit>
<limit>1000</limit>

</samplerInit>
<variable name='0000588:6'>

<distribution>BPfailtime</distribution>
</variable>
<variable name='0000575:6'>

<distribution>BPrepairtime</distribution>
</variable>
<variable name='20210000:4'>

<distribution>ScalFactPower</distribution>
</variable>

</MonteCarlo>
</Samplers>

In case the RELAP5 input file is a multi-deck, the user can specify the deck to which each
sampled variable corresponds to. As an example, the following sampling strategy:

<MonteCarlo name='MC_Sampler'>
<samplerInit>

<limit>1000</limit>
</samplerInit>

<variable name='1|0000588:6'>
<distribution>BPfailtime</distribution>

</variable>
<variable name='2|0000575:6'>

<distribution>BPrepairtime</distribution>
</variable>
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</MonteCarlo>
</Samplers>

performs:

• the sampling of the distribution
<BPfailtime> and it provides the sampled value to the 6th word of card 0000588 for the
first deck

• the sampling of the distribution
<BPrepairtime> and it provides the sampled value to the 6th word of card 0000575 for
the second deck

It can be seen that each variable is connected with a proper distribution defined in the
<Distributions> block (from the previous example). The following demonstrates how the
input for the first variable is read.

We are sampling a a variable situated in word 6 of the card 0000588 using a Grid sampling
method. The distribution that this variable is following is a Triangular distribution (see section
above). We are sampling this variable beginning from 0.0 in 10 equal steps of 2880. In case of
Dynamic Event Tree-based sampling, the input is very similar to the other sampling strategies with
the only “limitation” that the sampled variables directly linked to the Dynamic Event Tree must be
part of a RELAP5 trip. In case, other variables must be sampled, they are considered “epistemic”
variables and should be sampled using the Hybrid Dynamic Event Tree approach.

For example, the Dynamic Event Tree sampling and the Hybrid Dynamic Event Tree sampling
would look like the following:

<Samplers verbosity='debug'>
<DynamicEventTree name='DET'>

<variable name='414:6'>
<distribution>endtimedist</distribution>
<grid type='CDF' construction='custom'>0.1 0.3 0.99</grid>

</variable>
<variable name='454:6'>

<distribution>endtime2dist</distribution>
<grid type='CDF' construction='custom'>0.11 0.5 0.99</grid>

</variable>
</DynamicEventTree>

<DynamicEventTree name='HDET'>
<HybridSampler type="MonteCarlo">

<!-- in here we specify the epistemic like variables -->
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<samplerInit>
<limit>10</limit>

</samplerInit>
<variable name="200:1">
<distribution>missionTimeDist</distribution>

</variable>
</HybridSampler>
<variable name='414:6'>

<distribution>endtimedist</distribution>
<grid type='CDF' construction='custom'>0.1 0.3 0.99</grid>

</variable>
<variable name='454:6'>

<distribution>endtime2dist</distribution>
<grid type='CDF' construction='custom'>0.11 0.5 0.99</grid>

</variable>
</DynamicEventTree>

</Samplers>

19.3.8 Steps

For a RELAP interface, the <MultiRun> step type will most likely be used. First, the step needs
to be named: this name will be one of the names used in the <Sequence> block. In our example,
Grid Sampler and MC Sampler.

<MultiRun name='Grid_Sampler' verbosity='debug'>

With this step, we need to import all the files needed for the simulation:

• RELAP input file

• element tables – tpfh2o

<Input class='Files' type=''>inputrelap.i</Input>
<Input class='Files' type=''>tpfh2o</Input>

We then need to define which model will be used:

<Model class='Models' type='Code'>MyRELAP</Model>

We then need to specify which Sampler is used, and this can be done as follows:

540



<Sampler class='Samplers' type='Grid'>Grid_Sampler</Sampler>

And lastly, we need to specify what kind of output the user wants. For example the user might want
to make a database (in RAVEN the database created is an HDF5 file). Here is a classical example:

<Output class='Databases' type='HDF5'>Grid_out</Output>

Following is the example of two MultiRun steps which use different sampling methods (grid and
Monte Carlo), and creating two different databases for each one:

<Steps verbosity='debug'>
<MultiRun name='Grid_Sampler' verbosity='debug'>

<Input class='Files' type=''>inputrelap.i</Input>
<Input class='Files' type='' >tpfh2o</Input>
<Model class='Models' type='Code'>MyRELAP</Model>
<Sampler class='Samplers' type='Grid'>Grid_Sampler</Sampler>
<Output class='Databases' type='HDF5'>Grid_out</Output>

</MultiRun>
<MultiRun name='MC_Sampler' verbosity='debug'

re-seeding='210491'>
<Input class='Files' type=''>inputrelap.i</Input>
<Input class='Files' type='' >tpfh2o</Input>
<Model class='Models' type='Code' >MyRELAP</Model>
<Sampler class='Samplers'

type='MonteCarlo'>MC_Sampler</Sampler>
<Output class='Databases' type='HDF5' >MC_out</Output>

</MultiRun>
</Steps>

19.3.9 Databases

As shown in the <Steps> block, the code is creating two database objects called Grid out and
MC out. So the user needs to input the following:

<Databases>
<HDF5 name="Grid_out" readMode="overwrite"/>
<HDF5 name="MC_out" readMode="overwrite"/>

</Databases>

As listed before, this will create two databases. The files will have names corresponding to their
name appended with the .h5 extension (i.e. Grid out.h5 and MC out.h5).
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19.3.10 Modified Version of the Institute of Nuclear Safety System Incorporated (Japan)

The Institute of Nuclear Safety System Incorporated (Japan) has modified the RELAP5 source
code in order to be able to control some additional parameters from an auxiliary input file (modelPar.inp).
In order to use this interface, the user needs to input the subType attributeRelap5inssJp:

<Models>
<Code name='MyRELAP' subType='Relap5'>

<executable>˜/path_to_the_executable</executable>
<!-- here is taking the output from the first deck only -->
<outputDeckNumber>1</outputDeckNumber>

</Code>
</Models>

For perturbing such input file, the approach presented in section 19.1 (Generic Interface) has been
employed. For the standard RELAP5 input, the same approach previously in this section is used.
For example, in the following Sampler block, the card 9100101 is perturbed with the same approach
used in standard RELAP5; in addition, the variable modelParTest is going to be perturbed in the
modelPar.inp input file.

<MonteCarlo name="mc_loca">
<samplerInit>
<limit>1</limit>

</samplerInit>
<variable name="9100101:3">
<distribution>break_size</distribution>

</variable>
<variable name="modelParTest">

<distribution>break_size</distribution>
</variable>

</MonteCarlo>

19.4 RELAP7 Interface

This section covers the input specifications for running RELAP7 through RAVEN. It is important
to notice that this short explanation assumes that the reader already knows how to use the control
logic system in RELAP7. Since the presence of the control logic system in RELAP7, this code
interface is different with respect to the others and uses some special keyword available in RAVEN
(see the following).
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19.4.1 Files

In the <Files> section, as specified before, all of the files needed for the code to run should be
specified. In the case of RELAP7, the files typically needed are the following:

• RELAP7 Input file

• Control Logic file

Example:

<Files>
<Input name='nat_circ.i' type=''>nat_circ.i</Input>
<Input name='control_logic.py' type=''>control_logic.py</Input>

</Files>

The RAVEN/RELAP7 interface recognizes as RELAP7 inputs the files with the extensions “*.i”,
“*.inp” and “*.in”.

19.4.2 Models

For the <Models> block RELAP7 uses the RAVEN executable, since through this executable the
stochastic environment gets activated (possibility to sample parameters directly in the control logic
system) Here is a standard example of what can be used to use RELAP7 as the model:

<Models>
<Code name='MyRAVEN'

subType='RAVEN'><executable>˜path/to/RAVEN-opt</executable></Code>
</Models>

19.4.3 Distributions

As for all the other codes interfaces the <Distributions> block needs to be specified in order
to employ as sampling strategy (e.g. MonteCarlo, Stratified, etc.). In this block, the user specifies
the distributions that need to be used. Once the user defines the distributions in this block, RAVEN
activates the Distribution environment in the RAVEN/RELAP7 control logic system. The sampling
of the parameters is then performed directly in the control logic input file.

For example, let’s consider the sampling of a normal distribution for the primary pressure in
RELAP7:
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<Distributions>
<Normal name="Prim_Pres">
<mean>1000000</mean>
<sigma>100<sigma/>
</Normal>
</Distributions>

In order to change a parameter (independently on the sampling strategy), the control logic input
file should be modified as follows:

def initial_function(monitored, controlled, auxiliary)
print("monitored",monitored,"controlled",
controlled,"auxiliary",auxiliary)

controlled.pressureInPressurizer =
distributions.Prim_Pres.getDistributionRandom()
return

19.4.4 Samplers

In the <Samplers> block, all the variables that needs to be sampled must be specified. In case
some of these variables are directly sampled in the Control Logic system, the <variable> needs
to be replaced with <Distribution>. In this way, RAVEN is able to understand which vari-
ables needs to be directly modified through input file (i.e. modifying the original input file *.i) and
which variables are going to be “sampled” through the control logic system. For the example, we
are performing Grid Sampling. The global initial pressure wasn’t specified in the control logic so
it is going to be specified using the node <variable>. The “pressureInPressurizer” variable is
instead sampled in the control logic system; for this reason, it is going to be specified using the
node <Distribution>. For example,

<Samplers>
<Grid name="MC_samp">

<samplerInit> <limit>500</limit> </samplerInit>
<variable name="GlobalParams|global_init_P">

<distribution>Prim_Pres</distribution>
<grid construction="equal" steps="10" type="CDF">0.0

1.0</grid>
</variable>
<Distribution name="pressureInPressurizer">

<distribution>Prim_Pres</distribution>

544



<grid construction="equal" steps="10" type="CDF">0.0
1.0</grid>

</Distribution>
</Grid>
</Samplers>

19.5 MooseBasedApp Interface

19.5.1 Files

In the <Files> section, as specified before, all of the files needed for the code to run should be
specified. In the case of any MooseBasedApp, the files typically needed are the following:

• MooseBasedApp GetPot input file

• Restart Files (if the calculation is instantiated from a restart point)

• Mesh Files (in case the mesh is externally specified)

• Any other generic input file (CSVs with Power histories, boundary conditions files, etc.)

Example:

<Files>
<Input name='mooseBasedApp.i' type=''>mooseBasedApp.i</Input>
<Input name='0020_mesh.cpr' type=''>0020_mesh.cpr</Input>
<Input name='0020.xdr.0000' type="">0020.xdr.0000</Input>
<Input name='0020.rd-0' type="">0020.rd-0</Input>
<Input name='exodus_mesh.e' type="">exodus_mesh.e</Input>
<Input name='a_generic_additional_input_file.csv'

type="Generic">a_generic_additional_input_file.csv</Input>
</Files>

If any file is tagged with the type Generic, it will be perturbable with the approach (wildcards)
explained in the generic code interface (see 19.1).

19.5.2 Models

In the <Models> block particular MooseBasedApp executable needs to be specified. Here is a
standard example of what can be used to use with a typical MooseBasedApp (Bison) as the model:
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<Models>
<Code name='MyMooseBasedApp'

subType='MooseBasedApp'><executable>˜path/to/Bison-opt</executable></Code>
</Models>

19.5.3 Distributions

The <Distributions> block defines the distributions that are going to be used for the sampling
of the variables defined in the <Samplers> block. For all the possible distributions and all their
possible inputs please see the chapter about Distributions (see 9). Here we give a general example
of three different distributions:

<Distributions>
<Normal name='ThermalConductivity1'>

<mean>1</mean>
<sigma>0.001</sigma>
<lowerBound>0.5</lowerBound>
<upperBound>1.5</upperBound>

</Normal>
<Normal name='SpecificHeat'>

<mean>1</mean>
<sigma>0.4</sigma>
<lowerBound>0.5</lowerBound>
<upperBound>1.5</upperBound>

</Normal>
<Triangular name='ThermalConductivity2'>

<apex>1</apex>
<min>0.1</min>
<max>4</max>

</Triangular>
</Distributions>

It is good practice to name the distribution something similar to what kind of variable is going
to be sampled, since there might be many variables with the same kind of distributions but different
input parameters.
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19.5.4 Samplers

In the <Samplers> block we want to define the variables that are going to be sampled. Example:
We want to do the sampling of 3 variables:

• Thermal Conductivity of the Fuel;

• Specific Heat Transfer Ratio of the Cladding;

• Thermal Conductivity of the Cladding.

We are going to sample these 3 variables using two different sampling methods: Grid and
Monte-Carlo.

In order to perturb any MooseBasedApp, the user needs to specify the variables to be sampled
indicating the path to the value separated with the symbol “|”. For example, if the variable that we
want to perturb is specified in the input as follows:

[Materials]
...
[./heatStructure]

...
thermal_conductivity = 1.0
...

[../]
...

[]

the variable name in the Sampler input block needs to be named as follows:

...
<Samplers>

<aSampler name='aUserDefinedName' >
<variable

name='Materials|heatStructure|thermal_conductivity'>
...

</variable>
</aSampler>

</Samplers>
...

In case some variables in external (Generic input files) need to be perturbed, the wildcard ap-
proach can be used (for those variables):
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...
<Samplers>

<aSampler name='aUserDefinedName' >
<variable name='aWildCard1'>

...
</variable>

<variable name='aWildCard2'>
...

</variable>
<variable

name='Materials|heatStructure|thermal_conductivity'>
...

</variable>
</aSampler>

</Samplers>
...

In this case the tagged file (Generic) will be parsed to find the variables $RAVEN-aWildCard1$
and $RAVEN-aWildCard1$ and to replace their values with the corresponding sampled vari-
ables (for more details, see 19.1)

In this example, we proceed to do so for both the Grid sampling and the Monte-Carlo sampling.

<Samplers verbosity='debug'>
<Grid name='myGrid'>

<variable
name='Materials|heatStructure1|thermal_conductivity' >
<distribution>ThermalConductivity1</distribution>
<grid type='value' construction='custom' >0.6

0.7 0.8</grid>
</variable>
<variable name='Materials|heatStructure1|specific_heat' >
<distribution >SpecificHeat</distribution>
<grid type='CDF' construction='custom'>0.5

1.0 0.0</grid>
</variable>
<variable

name='Materials|heatStructure2|thermal_conductivity'>
<distribution >ThermalConductivity2</distribution>
<grid type='value' upperBound='4' construction='equal'

steps='1'>0.5</grid>
</variable>
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<variable name='aWildCard1'>
<distribution >ThermalConductivity2</distribution>
<grid type='value' upperBound='4' construction='equal'

steps='1'>0.5</grid>
</variable>

</Grid>
<MonteCarlo name='MC_Sampler' limit='1000'>

<variable
name='Materials|heatStructure1|thermal_conductivity' >
<distribution>ThermalConductivity1</distribution>

</variable>
<variable name='Materials|heatStructure1|specific_heat' >
<distribution >SpecificHeat</distribution>

</variable>
<variable

name='Materials|heatStructure2|thermal_conductivity'>
<distribution >ThermalConductivity2</distribution>

</variable>
<variable name='aWildCard1'>
<distribution >ThermalConductivity2</distribution>

</variable>
</MonteCarlo>

</Samplers>

19.5.5 Steps

For a MooseBasedApp, the <MultiRun> step type will most likely be used, as first step. First,
the step needs to be named: this name will be one of the names used in the <Sequence> block.
In our example, Grid Sampler and MC Sampler.

<MultiRun name='Grid_Sampler' >

With this step, we need to import all the files needed for the simulation:

• MooseBasedApp YAML input file;

• eventual restart files (optional);

• other auxiliary files (e.g., powerHistory tables, etc.).
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<Input class='Files' type=''>mooseBasedApp.i</Input>
<Input class='Files' type=''>0020_mesh.cpr</Input>
<Input class='Files' type=''>0020.xdr.0000</Input>
<Input class='Files' type=''>0020.rd-0</Input>

We then need to define which model will be used:

<Model class='Models' type='Code'>MyMooseBasedApp</Model>

We then need to specify which Sampler is used, and this can be done as follows:

<Sampler class='Samplers' type='Grid'>Grid_Sampler</Sampler>

And lastly, we need to specify what kind of output the user wants. For example the user might
want to make a database (in RAVEN the database created is an HDF5 file) and a DataObject of
type PointSet, to use in sub-sequential post-processing. Here is a classical example:

<Output class='Databases' type='HDF5'>MC_out</Output>
<Output class='DataObjects'

type='PointSet'>MCOutData</Output>

Following is the example of two MultiRun steps which use different sampling methods (grid
and Monte Carlo), and creating two different databases for each one:

<Steps verbosity='debug'>
<MultiRun name='Grid_Sampler' verbosity='debug'>

<Input class='Files' type=''>mooseBasedApp.i</Input>
<Input class='Files' type=''>0020_mesh.cpr</Input>
<Input class='Files' type='' >0020.xdr.0000</Input>
<Input class='Files' type=''>0020.rd-0</Input>
<Model class='Models' type='Code'>MyMooseBasedApp</Model>
<Sampler class='Samplers' type='Grid'>Grid_Sampler</Sampler>
<Output class='Databases' type='HDF5'>Grid_out</Output>
<Output class='DataObjects'

type='PointSet'>gridOutData</Output>
</MultiRun>
<MultiRun name='MC_Sampler' verbosity='debug'

re-seeding='210491'>
<Input class='Files' type=''>mooseBasedApp.i</Input>
<Input class='Files' type=''>0020_mesh.cpr</Input>
<Input class='Files' type='' >0020.xdr.0000</Input>
<Input class='Files' type=''>0020.rd-0</Input>
<Model class='Models' type='Code'>MyMooseBasedApp</Model>
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<Sampler class='Samplers' type='MonteCarlo'
>MC_Sampler</Sampler>

<Output class='Databases' type='HDF5' >MC_out</Output>
<Output class='DataObjects'

type='PointSet'>MCOutData</Output>
</MultiRun>

</Steps>

19.5.6 Databases

As shown in the <Steps> block, the code is creating two database objects called Grid out and
MC out. So the user needs to input the following:

<Databases>
<HDF5 name="Grid_out" readMode="overwrite"/>
<HDF5 name="MC_out" readMode="overwrite"/>

</Databases>

As listed before, this will create two databases. The files will have names corresponding to their
name appended with the .h5 extension (i.e. Grid out.h5 and MC out.h5).

19.5.7 DataObjects

As shown in the <Steps> block, the code is creating two DataObjects of type PointSet called
gridOutData and MCOutData. So the user needs to input the following:

<DataObjects>
<PointSet name='gridOutData'>

<Input>
Materials|heatStructure2|thermal_conductivity,
Materials|heatStructure1|specific_heat,
Materials|heatStructure2|thermal_conductivity

</Input>
<Output>aveTempLeft</Output>

</PointSet>
<PointSet name='MCOutData'>

<Input>
Materials|heatStructure2|thermal_conductivity,
Materials|heatStructure1|specific_heat,
Materials|heatStructure2|thermal_conductivity
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</Input>
<Output>aveTempLeft</Output>

</PointSet>
</DataObjects>

As listed before, this will create two DataObjects that can be used in sub-sequential post-processing.

19.5.8 OutStreams

As fully explained in section 14, if the user want to print out or plot the content of a DataObjects,
he needs to create an OutStream in the <OutStreams> XML block.
As it shown in the example below, for MooseBasedApp (and any other Code interface that might
use the symbol | for the Sampler’s variable syntax), in the Plot <x> and <y> specification, the user
needs to utilize curly brackets.

<OutStreams>
<Print name='gridOutDataDumpCSV'>

<type>csv</type>
<source>gridOutData</source>

</Print>
<Plot verbosity='debug' name='test' overwrite='False'>
<plotSettings>

<plot>
<type>line</type>
<x>MCOutData|Input|{Materials|heatStructure2|thermal_conductivity}</x>
<y>MCOutData|Output|aveTempLeft</y>
<kwargs><color>blue</color></kwargs>

</plot>
</plotSettings>
<actions><how>screen,png</how></actions>

</Plot>
</OutStreams>

19.6 MooseVPP Interface

The Moose Vector Post Processor is used mainly in the solid mechanics analysis. This interface
loads the values of the vector ouput processor to a <DataObjects> object.

To use this interface the [DomainIntegral] needs to be present in the MooseBasedApp’s input
file and the subnode <fileargs> should be defined in the subnode <Code> in the <Models>
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block of the RAVEN input file. The <fileargs> is required to have attributes with the below
specified values:

• type, string, required field, must be ”MooseVPP”

• arg, string, required field, the string value attached to the vector post processor action while
creating the output files.

This interface is actually identical to the MooseBasedApp interface, however there is few con-
straints on defining the output values of the post processor. The definition of these outputs in the
<DataObjects> depends on the definition of the [DomainIntegral].

The location of the value outputted is defined as ID# and the value is as value#. The ”#” defines
the number of the location. The example below contains 3 locations in the [DomainIntegral] where
the values are outputted.

Example:

...
<Models>

<Code name="MOOSETestApp" subType="MooseBasedApp">
<executable>%FRAMEWORK_DIR%/../../moose/
modules/combined/modules-%METHOD%</executable>

<fileargs type = "MooseVPP" arg = "_J_1_" />
<alias variable = "poissonsRatio" >
Materials|stiffStuff|poissons_ratio</alias>

<alias variable = "youngModulus" >
Materials|stiffStuff|youngs_modulus</alias>

</Code>
</Models>
...
<DataObjects>

<PointSet name="collset">
<Input>youngModulus,poissonsRatio</Input>
<Output>ID1,ID2,ID3,value1,value2,value3</Output>

</PointSet>
</DataObjects>
...
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19.7 OpenModelica Interface

OpenModelica (http://www.openmodelica.org) is an open souce implementation of the
Modelica simulation language. Modelica is ”a non-proprietary, object-oriented, equation based
language to conveniently model complex physical systems containing, e.g., mechanical, electrical,
electronic, hydraulic, thermal, control, electric power or process-oriented subcomponents.”1. Mod-
elica models are specified in text files with a file extension of .mo. A standard Modelica example
called BouncingBall which simulates the trajectory of an object falling in one dimension from a
height is shown as an example:

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
Integer foo;

equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der(h) = v;

when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge(impact) then -e*pre(v) else 0;
flying = v_new > 0;
reinit(v, v_new);

end when;

end BouncingBall;

19.7.1 Files

An OpenModelica installation specific to the operating system is used to create a stand-alone ex-
ecutable program that performs the model calculations. A separate XML file containing model
parameters and initial conditions is also generated as part of the build process. The RAVEN Open-
Modelica interface modifies input parameters by changing copies of this file. Both the executable

1http://www.modelica.org
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and XML parameter file names must be provided to RAVEN. In the case of the BouncingBall
model previously mentioned on the Windows operating system, the <Files>specification would
look like:

<Files>
<Input name='BouncingBall_init.xml'

type=''>BouncingBall_init.xml</Input>
<Input name='BouncingBall.exe' type=''>BouncingBall.exe</Input>

</Files>

19.7.2 Models

OpenModelica models may provide simulation output in a number of formats. The particular
format used is specified during the model generation process. RAVEN works best with Comma-
Separated Value (CSV) files, which is one of the possible output format options. Models are
generated using the OpenModelica Shell (OMS) command-line interface, which is part of the
OpenModelica installation. To generate an executable that provides CSV-formatted output, use
OMSl commands as follows:

1. Change to the directory containing the .mo file to generate an executable for:

>> cd("C:/MinGW/msys/1.0/home/bobk/projects/raven/framework/
↪→ CodeInterfaces/OpenModelica")

"C:/MinGW/msys/1.0/home/bobk/projects/raven/framework/
↪→ CodeInterfaces/OpenModelica"

2. Load the model file into memory:

>> loadFile("BouncingBall.mo")
true

3. Create the model executable, specifying CSV output format:

>> buildModel(BouncingBall, outputFormat="csv")
{"C:/MinGW/msys/1.0/home/bobk/projects/raven/framework/

↪→ CodeInterfaces/OpenModelica/BouncingBall","
↪→ BouncingBall_init.xml"}

Warning: The initial conditions are not fully specified. Use
↪→ +d=initialization for more information.

At this point the model executable and XML initialization file should have been created in
the same directory as the original model file.
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The model executable is specified to RAVEN using the <Models>section of the input file as
follows:

<Simulation>
...

<Models>
<Code name="BouncingBall" subType = "OpenModelica">

<executable>BouncingBall.exe</executable>
</Code>

</Models>
...

</Simulation>

19.7.3 CSV Output

The CSV files produced by OpenModelica model executables require adjustment before it may
be read by RAVEN. The first few lines of original CSV output from the BouncingBall example is
shown below:

"time","h","v","der(h)","der(v)","v_new","foo","flying","impact",
0,1,0,0,-9.810000000000001,0,2,1,0,

...

RAVEN will not properly read this file as-generated for two reasons:

• The variable names in the first line are each enclosed in double-quotes.

• Each line has a trailing comma.

The OpenModelica inteface will automatically remove the double-quotes and trailing commas
through its implementation of the finalizeCodeOutput function.

19.8 Dymola Interface

Modelica is ”a non-proprietary, object-oriented, equation-based language to conveniently model
complex physical systems containing, e.g., mechanical, electrical, electronic, hydraulic, thermal,
control, electric power or process-oriented subcomponents.”2. Modelica models (with a file exten-
sion of .mo) are built, translated (compiled), and simulated in Dymola (http://www.modelon.com/p-

2http://www.modelica.org
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roducts/dymola/), which is a commercial modeling and simulation environment based on the Mod-
elica modeling language. A standard Modelica example called BouncingBall, which simulates the
trajectory of an object falling in one dimension from a height, is shown as an example:

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
parameter Real hstart = 10 "height of ball at time zero";
parameter Real vstart = 0 "velocity of ball at time zero";
Real h(start=hstart,fixed=true) "height of ball";
Real v(start=vstart,fixed=true) "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;
Integer foo;

equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der(h) = v;

when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge(impact) then -e*pre(v) else 0;
flying = v_new > 0;
reinit(v, v_new);

end when;

annotation (uses(Modelica(version="3.2.1")),
experiment(StopTime=10, Interval=0.1),
__Dymola_experimentSetupOutput);

end BouncingBall;

19.8.1 Files

When a modelica model, e.g., BouncingBall model, is implemented in Dymola, the platform de-
pendent C-code from a Modelica model and the corresponding executable code (i.e., by default
dymosim.exe on the Windows operating system) are generated for simulation. After the executable
is generated, it may be run multiple times (with Dymola license). A separate TEXT file (by de-
fault dsin.txt) containing model parameters and initial conditions are also generated as part of the
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build process. The RAVEN Dymola interface modifies input parameters by changing copies of
this file. Both the executable and TEXT parameter file (or simulation initialization file) names
must be provided to RAVEN. The TEXT parameter file must be of type ’DymolaInitialisation’. In
the case of the BouncingBall model previously mentioned on the Windows operating system, the
<Files>specification would look like:

<Files>
<Input name='dsin.txt'

↪→ type='DymolaInitialisation'>dsin.txt</Input>
</Files>

The Dymola interface can only pass scalar values into the TEXT parameter file. If the user
wants to pass vector information to Dymola, he can do so by providing an optional TEXT vector
file to Dymola. This file must have the type ’DymolaVectors’. This additional file can then be read
by the Dymola model. If vecor data is passed from RAVEN to the Dymola interface and the TEXT
vector file is not specified, the interface will display an error and stop the Dymola execution. If the
TEXT vector file is specified (and vector data is passed to the interface), the interface will write
the datd into the specified file, but also display a warning, saying that the Dymola interface found
vector data to be passed and if this data is supposed to go into the simulation initialisation file of
type ’DymolaInitialisation’ the array must be split into scalars. The <Files>specification for the
vector data look as follows:

<Files>
<Input name='timeSeriesData.txt'

↪→ type='DymolaVectors'>timeSeriesData.txt</Input>
</Files>

19.8.2 Models

An executable (dymosim.exe) and a simulation initialization file (dsin.txt) can be generated after ei-
ther translating or simulating the Modelica model (BouncingBall.mo) using the Dymola Graphical
User Interface (GUI) or Dymola Application Programming Interface (API)-routines. To generate
an executable and a simulation initialization file, use the Dymola API-routines (or Dymola GUI)
to translate the model as follows:

1. Change to the directory containing the .mo file to generate an executable. In Dymola GUI,
this corresponds to File/Change Directory in menus:

>> cd("C:/msys64/home/KIMJ/projects/raven/framework/
↪→ CodeInterfaces/Dymola");

C:/msys64/home/KIMJ/projects/raven/framework/CodeInterfaces/
↪→ Dymola

558



= true

2. Reads the specified file and displays its window. In Dymola GUI, this corresponds to
File/Open in the menus:

>> openModel("BouncingBall.mo")
= true

3. Compile the model (with current settings), and create the model executable and the corre-
sponding simulation initialization file. In Dymola GUI, this corresponds to Translate Model
in the menus:

>> translateModel("BouncingBall");
= true

At this point the model executable and the simulation initialization file should have been
created in the same directory as the original model file. Additionally, they could be created
by simulating the model. The following command corresponds to Simulate in the menus in
Dymola GUI:

>> simulateModel("BouncingBall", stopTime=10,
↪→ numberOfIntervals=0, outputInterval=0.1, method="dassl"
↪→ , resultFile="BouncingBall");

= true

The file extension (.mat) is automatically added to a output file (resultFile), e.g., Bouncing-
Ball.mat. If the generated executable code is triggered directly from a command prompt, the
output file is always named as ”dsres.mat”.

The model executable is specified to RAVEN using the <Models>section of the input file as
follows:

<Simulation>
...

<Models>
<Code name="BouncingBall" subType = "Dymola">

<executable>dymosim.exe</executable>
</Code>

</Models>
...

</Simulation>

RAVEN works best with Comma-Separated Value (CSV) files. Therefore, the default .mat output
type needs to be converted to .csv output. The Dymola interface will automatically convert the
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.mat output to human-readable forms, i.e., .csv output, through its implementation of the finalize-
CodeOutput function.
In order to speed up the reading and conversion of the .mat file, the user can specify the list of
variables (in addition to the Time variable) that need to be imported and converted into a csv file
minimizing the IO memory usage as much as possible. Within the <Code> the following XML
node (in addition ot the <executable> one) can be inputted:

• <outputVariablesToLoad>, space separated list, optional parameter, a space sep-
arated list of variables that need be exported from the .mat file (in addition to the Time
variable).
Default: all the variables in the .mat file.

For example:

<Simulation>
...

<Models>
<Code name="BouncingBall" subType = "Dymola">

<executable>dymosim.exe</executable>
<outputVariablesToLoad>var1 var2

↪→ var3</outputVariablesToLoad>
</Code>

</Models>
...

</Simulation>

19.9 Mesh Generation Coupled Interfaces

Some software requires a provided mesh that requires a separate code run to generate. In these
cases, we use sampled geometric variables to generate a new mesh for each perturbation of the
original problem, then run the input with the remainder of the perturbed parameters and the per-
turbed mesh. RAVEN currently provides two interfaces for this type of calculation, listed below.

19.9.1 MooseBasedApp and Cubit Interface

Many MOOSE-based applications use Cubit (https://cubit.sandia.gov) to generate Ex-
odus II files as geometry and meshing for calculations. To use the developed interface, Cubit’s bin
directory must be added to the user’s PYTHONPATH. Input parameters for Cubit can be listed in
a journal (.jou) file. Parameter values are typically hardcoded into the Cubit command syntax,
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but variables may be predefined in a journal file through Aprepro syntax. This is an example of a
journal file that generates a rectangle of given height and width, meshes it, defines its volume and
sidesets, lists its element type, and writes it as an Exodus file:

#{x = 3}
#{y = 3}
#{out_name = "'out_mesh.e'"}
create surface rectangle width {x} height {y} zplane
mesh surface 1
set duplicate block elements off
block 1 surface 1
Sideset 1 curve 3
Sideset 2 curve 4
Sideset 3 curve 1
Sideset 4 curve 2
Block all element type QUAD4
export genesis {out_name} overwrite

The first three lines are the Aprepro variable definitions that RAVEN requires to insert sampled
variables. All variables that RAVEN samples need to be defined as Aprepro variables in the journal
file. One essential caveat to running this interface is that an Aprepro variable MUST be defined
with the name ”out name”. In order to run this script without RAVEN inserting the correct syntax
for the output file name and properly generate the Exodus file for a mesh, the output file name is
REQUIRED to be in both single and double quotation marks with the file extension appended to
the end of the file base name (e.g. ’”output file.e”’).

19.9.1.1 Files

<Files> works the same as in other interfaces with name and type attributes for each node entry.
The name attribute is a user-chosen internal name for the file contained in the node, and type
identifies which base-level interface the file is used within. <type> should only be specified for
inputs that RAVEN will perturb. For Moose input files, <type> should be ’MooseInput’ and
for Cubit journal files, the <type> should be ’CubitInput’. The node should contain the path
to the file from the working directory. The following is an example of a typical <Files> block.

<Files>
<Input name='moose_test'

↪→ type='MooseInput'>simple_diffusion.i</Input>
<Input name='mesh_in'

↪→ type='CubitInput'>rectangle.jou</Input>
<Input name='other_file' type=''

↪→ >some_file_moose_input_needs.ext</Input>
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</Files>

19.9.1.2 Models

A user provides paths to executables and aliases for sampled variables within the <Models>
block. The <Code> block will contain attributes name and subType. Name identifies that partic-
ular <Code> model within RAVEN, and subType specifies which code interface the model will
use. The <executable> block should contain the absolute or relative (with respect to the cur-
rent working directory) path to the MooseBasedApp that RAVEN will use to run generated input
files. The absolute or relative path to the Cubit executable is specified within <preexec>. If
the <preexec> block is not needed, the MooseBasedApp interface is probably preferable to the
Cubit-Moose interface.

Aliases are defined by specifying the variable attribute in an <alias> node with the internal
RAVEN variable name chosen with the node containing the model variable name. The Cubit-
Moose interface uses the same syntax as the MooseBasedApp to refer to model variables, with
pipes separating terms starting with the highest YAML block going down to the individual param-
eter that RAVEN will change. To specify variables that are going to be used in the Cubit journal
file, the syntax is ”Cubit—aprepro var”. The Cubit-Moose interface will look for the Cubit tag in
all variables passed to it and upon finding it, send it to the Cubit interface. If the model variable
does not begin with ’Cubit’, the variable MUST be specified in the MooseBasedApp input file.
While the model variable names are not required to have aliases defined (the <alias> blocks are
optional), it is highly suggested to do so not only to ensure brevity throughout the RAVEN input,
but to easily identify where variables are being sent in the interface.

An example <Models> block follows.

<Models>
<Code name="moose-modules" subType="CubitMoose">

<executable>%FRAMEWORK_DIR%/../../moose/modules/combined/...
modules-%METHOD%</executable>

<preexec>/hpc-common/apps/local/cubit/13.2/bin/cubit</preexec>
<alias variable="length">Cubit@y</alias>
<alias variable="bot_BC">BCs|bottom|value</alias>

</Code>
</Models>
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19.9.1.3 Distributions

The <Distributions> block defines all distributions used to sample variables in the current
RAVEN run.

For all the possible distributions and their possible inputs please refer to the Distributions chap-
ter (see 9). It is good practice to name the distribution something similar to what kind of variable
is going to be sampled, since there might be many variables with the same kind of distributions but
different input parameters.

19.9.1.4 Samplers

The <Samplers> block defines the variables to be sampled.

After defining a sampling scheme, the variables to be sampled and their distributions are iden-
tified in the <variable> blocks. The name attribute in the <variable> block must either be
the full MooseBasedApp model variable name or the alias name specifed in <Models>. If the
sampled variable is a geometric property that will be used to generate a mesh with Cubit, remember
the syntax for variables being passed to journal files (Cubit—aprepro var).

For listings of available samplers refer to the Samplers chapter (see 10).

See the following for an example of a grid based sampler for length and the bottom boundary
condition (both of which have aliases defined in <Models>).

<Samplers>
<Grid name="Grid_sampling">

<variable name="length" >
<distribution>length_dist</distribution>
<grid type="value" construction="custom">1.0 2.0</grid>

</variable>
<variable name="bot_BC">

<distribution>bot_BC_dist</distribution>
<grid type="value" construction="custom">3.0 6.0</grid>

</variable>
</Grid>

</Samplers>
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19.9.1.5 Steps,OutStreams,DataObjects

This interface’s <Steps>, <OutStreams>, and <DataObjects> blocks do not deviate sig-
nificantly from other interfaces’ respective nodes. Please refer to previous entries for these blocks
if needed.

19.9.1.6 File Cleanup

The Cubit-Moose interface automatically removes files that are commonly unwanted after the
RAVEN run reaches completion. Cubit has been described as ”talkative” due to additional journal
files with execution information being generated by the program after every completed journal file
run. The quantity of these files can quickly become unwieldly if the working directory is not kept
clean; thus these files are removed. In addition, some users may wish to remove Exodus files after
the RAVEN run is complete as the typical size of each file is quite large and it is assumed that any
output quantities of interest will be collected by appropriate postprocessors and the OutStreams.
Exodus files are not automatically removed, but by using the <deleteOutExtension> node
in <RunInfo>, one may specify the Exodus extension to save a fair amount of storage space after
RAVEN completes a sequence. For example:

<RunInfo>
...
<deleteOutExtension>e</deleteOutExtension>
...

</RunInfo>

19.9.2 MooseBasedApp and Bison Mesh Script Interface

For BISON users, a Python mesh generation script is included in the %BISON DIR%/tools/UO2/
directory. This script generates 3D or 2D (RZ) meshes for nuclear fuel rods using Cubit with
templated commands. The BISON Mesh Script (BMS) is capable of generating rods with discrete
fuel pellets of various size in assorted configurations. To use this interface, Cubit’s bin directory
must be added to the user’s PYTHONPATH.

19.9.2.1 Files

Similar to the Cubit-Moose interface, the BisonAndMesh interface requires users to specify all files
required to run their input so that these file may be copied into the respective sequence’s working
directory. The user will give each file an internal RAVEN designation with the name attribute, and
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the MooseBasedApp and BISON Mesh Script inputs must be assigned their respective types in
another attribute of the <Input> node. An example follows.

<Files>
<Input name='bison_test'

↪→ type='MooseInput'>simple_bison_test.i</Input>
<Input name='mesh_in'

↪→ type='BisonMeshInput'>coarse_input.py</Input>
<Input name='other_file'

↪→ type=''>some_file_moose_input_needs.ext</Input>
</Files>

19.9.2.2 Models

A user provides paths to executables and aliases for sampled variables within the <Models>
block. The <Code> block will contain attributes name and subType. name identifies that
particular <Code>model within RAVEN, and subType specifies which code interface the model
will use. The <executable> block should contain the absolute or relative (with respect to the
current working directory) path to the MooseBasedApp that RAVEN will use to run generated input
files. The absolute or relative path to the mesh script python file is specified within <preexec>.
If the <preexec> block is not needed, use the MooseBasedApp interface.

Aliases are defined by specifying the variable attribute in an <alias> node with the internal
RAVEN variable name chosen with the node containing the model variable name. The Biso-
nAndMesh interface uses the same syntax as the MooseBasedApp to refer to model variables, with
pipes separating terms starting with the highest YAML block going down to the individual param-
eter that RAVEN will change. To specify variables that are going to be used in the BISON Mesh
Script python input, the syntax is ”Cubit—dict name—var name”. The interface will look for the
Cubit tag in all variables passed to it and upon finding the tag, send it to the BISON Mesh Script
interface. If the model variable does not begin with Cubit, the variable MUST be specified in the
MooseBasedApp input file. While the model variable names are not required to have aliases de-
fined (the <alias> blocks are optional), it is highly suggested to do so not only to ensure brevity
throughout the RAVEN input, but to easily identify where variables are being sent in the interface.

An example <Models> block follows.

<Models>
<Code name="Bison-opt" subType="BisonAndMesh">

<executable>%FRAMEWORK_DIR%/../../bison/bison-%METHOD%</executable>
<preexec>%FRAMEWORK_DIR%/../../bison/tools/UO2/mesh_script.py</preexec>
<alias variable="pellet_radius"

↪→ >Cubit@Pellet1|outer_radius</alias>
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<alias
↪→ variable="clad_thickness">Cubit@clad|clad_thickness</alias>

<alias variable="fuel_k"
↪→ >Materials|fuel_thermal|thermal_conductivity</alias>

<alias variable="clad_k"
↪→ >Materials|clad_thermal|thermal_conductivity</alias>

</Code>
</Models>

19.9.2.3 Distributions

The <Distributions> block defines all distributions used to sample variables in the current
RAVEN run.

For all the possible distributions and their possible inputs please refer to the Distributions chap-
ter (see 9). It is good practice to name the distribution something similar to what kind of variable
is going to be sampled, since there might be many variables with the same kind of distributions but
different input parameters.

19.9.2.4 Samplers

The <Samplers> block defines the variables to be sampled.

After defining a sampling scheme, the variables to be sampled and their distributions are iden-
tified in the <variable> blocks. The name attribute in the <variable> block must either be
the full MooseBasedApp model variable name or the alias name specified in <Models>. If the
sampled variable is a geometric property that will be used to generate a mesh with Cubit, remember
the syntax for variables being passed to journal files (Cubit—aprepro var).

For listings of available samplers refer to the Samplers chapter (see 10).

See the following for an example of a grid based sampler for length and the bottom boundary
condition (both of which have aliases defined in <Models>).

<Samplers>
<Grid name="Grid_sampling">

<variable name="length" >
<distribution>length_dist</distribution>
<grid type="value" construction="custom">1.0 2.0</grid>

</variable>
<variable name="bot_BC">
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<distribution>bot_BC_dist</distribution>
<grid type="value" construction="custom">3.0 6.0</grid>

</variable>
</Grid>

</Samplers>

19.9.2.5 Steps,OutStreams,DataObjects

This interface’s <Steps>, <OutStreams>, and <DataObjects> blocks do not deviate sig-
nificantly from other interfaces’ respective nodes. Please refer to previous entries for these blocks
if needed.

19.9.2.6 File Cleanup

The BisonAndMesh interface automatically removes files that are commonly unwanted after the
RAVEN run reaches completion. Cubit has been described as ”talkative” due to additional journal
files with execution information being generated by the program after every completed journal file
run. The BISON Mesh Script creates a journal file to run with cubit after reading input parameters;
so Cubit will generate its ”redundant” journal files, and .pyc files will litter the working directory
as artifacts of the python mesh script reading from the .py input files. The quantity of these files can
quickly become unwieldly if the working directory is not kept clean, thus these files are removed.
Some users may wish to remove Exodus files after the RAVEN run is complete as the typical size
of each file is quite large and it is assumed that any output quantities of interest will be collected
by appropriate postprocessors and the OutStreams. Exodus files are not automatically removed,
but by using the <deleteOutExtension> node in <RunInfo>, one may specify the Exodus
extension (*.e) to save a fair amount of storage space after RAVEN completes a sequence. For
example:

<RunInfo>
...
<deleteOutExtension>e</deleteOutExtension>
...

</RunInfo>

19.10 Rattlesnake Interfaces

This section covers the input specification for running Rattlesnake through RAVEN. It is important
to notice that this short explanation assumes that the reader already knows how to use Rattlesnake.
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The interface can be used to perturb the Rattlesnake MOOSE-based input file as well as the Yak
cross section libraries XML input files (e.g. multigroup cross section libraries) and Instant format
cross section libraries.

19.10.1 Files

<Files> works the same as in other interfaces with name and type attributes for each node
entry. The name attribute is a user-chosen internal name for the file contained in the node, and
type identifies which base-level interface the file is used within. type should only be specified
for inputs that RAVEN will perturb. Take Rattlesnake input files for example, type should be
’RattlesnakeInput’.

19.10.1.1 Perturb Yak Multigroup Cross Section Libraries

If the user would like to perturb the Yak multigroup cross section libraries, the user need to use
the ’YakXSInput’ for the type of the libaries. In addition, the type of the alias files that
are used to perturb the Yak multigroup cross section libraries should be ’YakXSAliasInput’.
The following is an example of a typical <Files> block.

<Files>
<Input name='rattlesnakeInput'

↪→ type='RattlesnakeInput'>simple_diffusion.i</Input>
<Input name='crossSection' type='YakXSInput'>xs.xml</Input>
<Input name='alias' type='YakXSAliasInput'>alias.xml</Input>

</Files>

The alias files are employed to define the variables that will be used to perturb Yak multigroup
cross section libraries. The following is an example of a typical alias file:

<Multigroup_Cross_Section_Libraries Name="twigl" NGroup="2"
↪→ Type="rel">
<Multigroup_Cross_Section_Library ID="1">

<Fission gridIndex="1" mat="pseudo-seed1"
↪→ gIndex="1">f11</Fission>

<Capture gridIndex="1" mat="pseudo-seed1"
↪→ gIndex="1">c11</Capture>

<TotalScattering gridIndex="1" mat="pseudo-seed1"
↪→ gIndex="1">t11</TotalScattering>

<Nu gridIndex="1" mat="pseudo-seed1" gIndex="1">n11</Nu>
<Fission gridIndex="1" mat="pseudo-seed2"

↪→ gIndex="2">f22</Fission>
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<Capture gridIndex="1" mat="pseudo-seed2"
↪→ gIndex="2">c22</Capture>

<TotalScattering gridIndex="1" mat="pseudo-seed2"
↪→ gIndex="2">t22</TotalScattering>

<Nu gridIndex="1" mat="pseudo-seed2" gIndex="2">n22</Nu>
<Fission gridIndex="1" mat="pseudo-seed1-dup"

↪→ gIndex="1">f11</Fission>
<Capture gridIndex="1" mat="pseudo-seed1-dup"

↪→ gIndex="1">c11</Capture>
<TotalScattering gridIndex="1" mat="pseudo-seed1-dup"

↪→ gIndex="1">t11</TotalScattering>
<Nu gridIndex="1" mat="pseudo-seed1-dup"

↪→ gIndex="1">n11</Nu>
<Transport gridIndex="1" mat="pseudo-seed1-dup"

↪→ gIndex="1">d11</Transport>
</Multigroup_Cross_Section_Library>

</Multigroup_Cross_Section_Libraries>

In the above alias file, the Name of <Multigroup Cross Section Libraries> are used
to indicate which Yak multigroup cross section library input file will be perturbed. The NGroup,
ID, and <Multigroup Cross Section Library> should be consistent with the Yak multi-
group cross section library input files. The <Fission>, <Capture>, <TotalScattering>,
<Nu>, gridIndex, mat, and gIndex are used to find the corresponding cross sections in the
Yak multigroup cross section library input files. For example:

<Fission gridIndex="1" mat="pseudo-seed1"
↪→ gIndex="1">f11</Fission>

This node defines an alias with name ’f11’ used to represent the fission cross section at energy
group ’1’ for material with name ’pseudo-seed1’ at grid index ’1’ in the Yak multigroup cross
section library input files.

Note: The attribute Type="rel" indicates that the cross sections will be perturbed relatively
(i.e. perturbed by percents). In this case, the user also needs to specify a relative covariance matrix
for <covaraince type="rel"> in <MultivariateNormal> distribution, and the values
for <mu> should be ‘ones’. In the other case, if the user choose Type="abs", the cross sections
will be perturbed absolutely (i.e. perturbed by values), and the user needs to provide an absolute
covariance matrix and specify ‘zeros’ for <mu> in <MultivariateNormal> distribution.

Note: Currently, only the following cross sections can be perturbed by the user: Fission,
Capture, Nu, TotalScattering, and Transport.
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19.10.1.2 Perturb Instant format Cross Section Libraries

If the user would like to perturb the Instant cross section libraries, the user need to use the
’InstantXSInput’ for the type of the libaries. In addition, the type of the alias files that are
used to perturb the Instant format cross section libraries should be ’InstantXSAliasInput’.
The following is an example of a typical <Files> block.

<Files>
<Input name='rattlesnakeInput'

↪→ type='RattlesnakeInput'>iaea2d_ls_sn.i</Input>
<Input name='crossSection'

↪→ type='InstantXSInput'>iaea2d_materials.xml</Input>
<Input name='alias'

↪→ type='InstantXSAliasInput'>alias.xml</Input>
</Files>

The alias files are employed to define the variables that will be used to perturb Instant format cross
section libraries. The following is an example of a typical alias file:

<Materials>
<Macros NG="2" Type="rel">

<material ID="1">
<FissionXS gIndex="1">f11</FissionXS>
<CaptureXS gIndex="1">c11</CaptureXS>
<TotalScatteringXS gIndex="1">t11<TotalScatteringXS>
<Nu gIndex="1">n11</Nu>
<DiffusionCoefficient gIndex="1">d11</DiffusionCoefficient>

</material>
</Macros>

</Materials>

In the above alias file, the NG and ID should be consistent with the Instant format cross section
library input files. The <FissionXS>, <CaptureXS>, <TotalScatteringXS>, <Nu>,
gIndex, are used to find the corresponding cross sections in the Instant format cross section
library input files. For example, the variable ’f11’ used to represent the fission cross section at
energy group ’1’ for material with ’ID’ equal ’1’ in the given cross section library.

Note: The attribute Type="rel" indicates that the cross sections will be perturbed relatively
(i.e. perturbed by percents). In this case, the user also needs to specify a relative covariance matrix
for <covaraince type="rel"> in <MultivariateNormal> distribution, and the values
for <mu> should be ‘ones’. In the other case, if the user choose Type="abs", the cross sections
will be perturbed absolutely (i.e. perturbed by values), and the user needs to provide an absolute
covariance matrix and specify ‘zeros’ for <mu> in <MultivariateNormal> distribution.
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Note: Currently, only the following cross sections can be perturbed by the user: FissionXS,
CaptureXS, Nu, TotalScatteringXS, and DiffusionCoefficient.

19.10.2 Models

A user provides paths to executables and aliases for sampled variables within the <Models>
block. The <Code> block will contain attributes <name> and <subType>. The <name> iden-
tifies that particular <Code> model within RAVEN, and <subType> specifies which code inter-
face the model will use. The <executable> block should contain the absolute or relative (with
respect to the current working directory) path to Rattlesnake that RAVEN will use to run generated
input files.

An example <Models> block follows.

<Models>
<Code name="Rattlesnake" subType="Rattlesnake">

<executable>%FRAMEWORK_DIR%/../../rattlesnake/
rattlesnake-%METHOD%</executable>

</Code>
</Models>

19.10.3 Distributions

The <Distributions> block defines all distributions used to sample variables in the current
RAVEN run.

For all the possible distributions and their possible inputs please refer to the Distributions chap-
ter (see 9). It is good practice to name the distribution something similar to what kind of variable
is going to be sampled, since there might be many variables with the same kind of distributions but
different input parameters.

19.10.3.1 Samplers

The <Samplers> block defines the variables to be sampled. After defining a sampling scheme,
the variables to be sampled and their distributions are identified in the <variable> blocks. The
name attribute in the <variable> block must either be the full MooseBasedApp (Rattlesnake)
model variable name, the alias name specifed in <Models>, or the variable name specified in the
provided alias files.
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For listings of available samplers, please refer to the Samplers chapter (see 10). See the fol-
lowing for an example of a grid based sampler for the first energy group fission and capture cross
sections (both of which have defined in alias files provided in <Files>).

<Samplers>
<Grid name="Grid_sampling">

<variable name="fission_group_1" >
<distribution>fission_dist</distribution>
<grid type="value" construction="custom">1.0 2.0</grid>

</variable>
<variable name="capture_group_1">

<distribution>capture_dist</distribution>
<grid type="value" construction="custom">3.0 6.0</grid>

</variable>
</Grid>

</Samplers>

19.10.4 Steps

For a Rattlesnake interface, the <MultiRun> step type will most likely be used. First, the step
needs to be named: this name will be one of the names used in the <Sequence> block. In our
example, ’Grid Rattlesnake’.

<MultiRun name='Grid_Rattlesnake' verbosity='debug'>
<Input class='Files' type=''>RattlesnakeInput.i</Input>
<Input class='Files' type=''>xs.xml</Input>
<Input class='Files' type=''>alias.xml</Input>
<Model class='Models' type='Code'>Rattlesnake</Model>
<Sampler class='Samplers'

↪→ type='Grid'>Grid_Samplering</Sampler>
<Output class='DataObjects' type='PointSet'>solns</Ouput>

With this step, we need to import all the files needed for the simulation:

• Rattlesnake MOOSE-based input file;

• Yak multigroup cross section libraries input files (XML);

• Yak alias files used to define the perturbed variables (XML).

We then need to define <Model>, <Sampler> and <Output>. The <Output> can be <DataObjects>
or <OutStreams>.
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19.11 MAAP5 Interface

This section presents the main aspects of the interface coupling RAVEN with MAAP5, the con-
sequent RAVEN input adjustments and the modifications of the MAAP5 files required to run the
two coupled codes. The interface works both for forward sampling and the DET, however there
are some differences depending on the selected sampling strategy.

19.11.1 RAVEN Input file

19.11.1.1 Files

MAAP5 requires more than one file to run a simulation. This means that, since the <Files>
section has to contain all the files required by the external model (MAAP5) to be run, all these
files need to be included within this node. This involves not only the input file (.inp) but also the
include file, the parameter file, all the files defining the different “PLOTFILs”, if any, and the other
files which could result useful for the MAAP5 simulation run.

Example:

<Files>
<Input name="test.inp" type="">test.inp</Input>
<Input name="include" type="">include</Input>
<Input name="plot.txt" type="">plot.txt</Input>
<Input name="plant.par" type="">plant.par</Input>

</Files>

The files mentioned in this section need, then, to be put into the working directory specified by the
<workingDir> node into the <RunInfo> block.

19.11.1.2 Models

The <Models> block contains the name of the executable file of MAAP5 (with the path, if neces-
sary), and the name of the interface (e.g. MAAP5 GenericV7). The block has also some required
nodes:

• <boolMaapOutputVariables>: containing the number of the MAAP5 IEVNT corre-
sponding to the boolean events of interest;

• <contMaapOutputVariables>: containing the list of all the continuous variables we
are interested at, and that we want to monitor;

573



• <stopSimulation>: this node is required only in case of DET sampling strategy. The
user needs to specify if the MAAP5 simulation run stops due to the reached END TIME,
specifying ”mission time”, or due to the occurrence of a specific event by inserting the num-
ber of the corresponding MAAP5 IEVNT (e.g IEVNT(691) for core uncovery)

• <includeForTimer>: also this node is required only in case of DET sampling strategy
and it contains the name of the MAAP5 include file where the TIMERS for the different vari-
ables are defined (see paragraph ”MAAP5 include file below” for more information about
timers).

A <Models> block is shown as an example below:

<Models>
<Code name="MyMAAP" subType="MAAP5\_GenericV7">

<executable>MAAP5.exe</executable>
<clargs type='input' extension='.inp'/>
<boolMaapOutputVariables>691</boolMaapOutputVariables>
<contMaapOutputVariables>PPS,PSGGEN(1),ZWDC2SG(1)
</contMaapOutputVariables>
<stopSimulation>mission_time</stopSimulation>
<includeForTimer>include</includeForTimer>

</Code>
</Models>

19.11.1.3 Other blocks

All the other blocks (e.g. <Distributions>, <Samplers>, <Steps>, <Databases>,
<OutStream>, etc.) do not require any particular arrangements than already provided by a
RAVEN input. User can, therefore, refer to the corresponding sections of the User’s Manual. This
is valid for both forward sampling and DET.

19.11.2 MAAP5 Input files

The coupling of RAVEN and MAAP5 requires modifications to some MAAP5 files in order to
work. This is particularly true when a DET analysis is performed. The MAAP5 input files that
need to be modified are:

• MAAP5 include file

• MAAP5 input file (.inp)

• PLOTFIL blocks
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19.11.2.1 MAAP5 include file

Usually MAAP5 simulation provides the presence of some include files, for example, containing
the user-defined variables, timers, definition of the plotfil, etc. The adjustments explained in this
section are required only in case of a DET analysis. The user needs to modify the include file
containing the set of the timers used into the run, by adding the definition of the different timers,
one for each variable that causes a branching. The include file to be modified should correspond
to that one defined in the <includeForTimer> block of the RAVEN xml input.

User is supposed to check that the numbers used for the different timers definition are not
already used in any of the other MAAP5 files. These timers should be preceeded by a line reporting
”C Branching + name of the variable sampled by RAVEN causing the branching”.

For example, we assume that DIESEL is the name of the variable corresponding to the failure
time of the Diesel generators (user defined). User has to firstly ensure that, for example, ”TIMER
100” is not already used into the model, then the following lines need to be added into the selected
include file for the set of the timer corresponding to the Diesel generators failure:

C Branching DIESEL
WHEN (TIM>DIESEL)

SET TIMER 100
END

It is worth mentioning that at this step a TIMER should be defined also for the event IEVNT
specified into the <stopSimulation>, if this is the stop condition for the MAAP5 run:

WHEN IEVNT(691) == 1.0
SET TIMER 10

END

The interface will check that one timer is defined for each variable of the DET. If not, an error
arises suggesting to user the name of the variable having no timer defined.

19.11.2.2 MAAP5 input file

In the ”parameter change” section of the MAAP5 input file, the user should declare the name of
the variables sampled by RAVEN according to the following statement:

variable = $ RAVEN-variable:default$

where the dafault value is optional.

For example:
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DIESEL = $RAVEN-DIESEL:-1$

This is valid for both forward and DET sampled variables. In particular, in case of DET analysis,
the variables causing the occurrence of the branch should be assigned within a block identified by
the comment ”C DET Sampled variables”:

C DET Sampled Variables
DIESEL = $RAVEN-DIESEL:-1$
C End DET Sampled Variables

If the sampled variables are user-defined, then the user shall ensure that they are initialized (to the
default value) and set within the user-defined variables section of one of the include file. As usual,
a distribution and a sampling strategy should then correspond to each of these variables into the
RAVEN xml input file.

Only for the DET analysis, then, the occurence of a branch will be identified by a comment
before. This comment is ”C BRANCHING + name of the variable determining the branch” and
acts as a sort of branching marker. Looking for these markers, indeed, the interface (in case of
DET sampler) verifies that at least one branching exists, and furthermore, that one branching is
defined for each of the variables contained into ”DET sampled variables”.

Within the block, the occurrence of the branching leads the value of a variable (user-defined)
called ”TIM+number of the corresponding timer set into the include file” to switch to 1.0. The
code, in fact, detects if a branch has occurred by monitoring the value of these kind of variables.
SInce these variables are user-defined, they need to be initialized to a value (different from 1.0),
into the ”user-defined variables” section of one of the include files.

Therefore following the previous example, if we want that, when the diesels failure occurs it
leads to the event ”Loss of AC Power” (IEVNT(205) of MAAP5), we will have:

C Branching TIMELOCA
WHEN TIM > DIESEL
TIM100=1.0
IEVNT(205)=1.0
END

It is worth noticing that no comments should be contained within the line of assignment (i.e.
IEVNT(205)=1.0 //LOSS OF AC POWER is not allowed).

Finally, only in case of DET analysis, a stop simulation condition (provided by the comment
”C Stop Simulation condition”) needs to be put into the input. The original input should have all
the timers (linked with the branching) separated by an OR condition, even including that one of
the event that stops the simulation (e.g. IEVNT(691)), if any.
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C Stop Simulation condition
IF (TIMER 10 > 0) OR (TIMER 100 > 0) OR ... (TIMER N > 0)
TILAST=TIM
END

This allows the simulation run to stop when a branch condition occurs, creating the restart file that
will be used by the two following branches.

For each branch, then, the interface will automatically update the name of the RESTART FILE
to be used and of the RESTART TIME that will be equal to the difference between the END TIME
of the ”parent” simulation and the PRINT INTERVAL (which specifies the interval at which the
restart output is written).

19.11.2.3 MAAP5 PLOTFIL blocks

This section refers to the ”PLOTFIL blocks” used to modify the plot file (.csv) defined into the
parameter file. These blocks need to be modified in order to include some variables. It is important,
indeed, that the MAAP5 csv PLOTFIL files contain the evolution of:

• RAVEN sampled variables (e.g. DIESEL) (both for Forward and DET sampling)

• the variables whose value is modified by the occurrence of one of the branches, either con-
tinuous or boolean (e.g. IEVNT(225))

• the variables of interest defined within <boolMaapOutputVariables> and
<contMaapOutputVariables> blocks (both for Forward and DET sampling)

If one of these variables is not contained into one of csv files, RAVEN will give an error.

19.12 MAMMOTH Interface

This section covers the input specification for running MAMMOTH through RAVEN. It is impor-
tant to notice that this short explanation assumes that the reader already knows how to use MAM-
MOTH. The interface can be used to perturb Bison, Rattlesnake, RELAP-7, and general MOOSE
input files that utilize MOOSE’s standard YAML input structure as well as Yak multigroup cross
section library XML input files.
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19.12.1 Files

<Files> works the same as in other interfaces with name and type attributes for each node entry.
The name attribute is a user-chosen internal name for the file contained in the node, and type
identifies which base-level interface the file is used within. type should be specified for all inputs
used in RAVEN’s MultiRun for MAMMOTH (including files not perturbed by RAVEN). The
MAMMOTH input file’s type should have ’MAMMOTHInput’ prepended to the driver app’s
input specification (e.g. ’MAMMOTHInput|appNameInput’). Any other app’s input file needs
a type with the app’s name prepended to ’Input’ (e.g. ’BisonInput’, ’Relap7Input’,
etc.). In addition, the type for any mesh input is the app in which that mesh is utilized prepended
to ’|Mesh’; so a Bison mesh would have a type of ’Bison|Mesh’ and similarly a mesh for
Rattlesnake would have ’Rattlesnake|Mesh’ as its type. In cases where a file needs to be
copied to each perturbed run directory (to be used as function input, control logic, etc.), one can
use the type ’AncillaryInput’ to make it clear in the RAVEN input file that this is file is
required for the simulation to run but contains no perturbed parameters. For Yak multigroup cross
section libraries, the type should be ’YakXSInput’, and for the Yak alias files that are used to
perturb the Yak multigroup cross section libraries, the type should be ’YakXSAliasInput’.

The node should contain the path to the file from the working directory. The following is an
example of a typical <Files> block.

<Files>
<Input name='mammothInput'

↪→ type='MAMMOTHInput|RattlesnakeInput'>test_mammoth.i</Input>
<Input name='crossSection' type='YakXSInput'>xs.xml</Input>
<Input name='alias' type='YakXSAliasInput'>alias.xml</Input>
<Input name='bisonInput'

↪→ type='BisonInput'>test_bison.xml</Input>
<Input name='bisonMesh'

↪→ type='Bison|Mesh'>bisonMesh.e</Input>
<Input name='fuelCTEfunct'

↪→ type='AncillaryInput'>uo2_CTE.csv</Input>
<Input name='rattlesnakeMesh'

↪→ type='Rattlesnake|Mesh'>rattlesnakeMesh.e</Input>
</Files>

The alias files are employed to define the variables that will be used to perturb Yak multigroup
cross section libraries. Please see the section 19.10 for the example.
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19.12.2 Models

A user provides paths to executables and aliases for sampled variables within the <Models>
block. The <Code> block will contain name and subType. The attribute name identifies that
particular <Code>model within RAVEN, and subType specifies which code interface the model
will use. The <executable> block should contain the absolute or relative (with respect to the
current working directory) path to MAMMOTH that RAVEN will use to run generated input files.

An example <Models> block follows.

<Models>
<Code name="Mammoth" subType="MAMMOTH">

<executable>\%FRAMEWORK_DIR\%/../../mammoth/
mammoth-%METHOD%</executable>

</Code>
</Models>

19.12.3 Distributions

The <Distributions> block defines all distributions used to sample variables in the current
RAVEN run.

For all the possible distributions and their possible inputs please refer to the Distributions chap-
ter (see 9). It is good practice to name the distribution something similar to what kind of variable
is going to be sampled, since there might be many variables with the same kind of distributions but
different input parameters.

19.12.3.1 Samplers

The <Samplers> block defines the variables to be sampled. After defining a sampling scheme,
the variables to be sampled and their distributions are identified in the <variable> blocks. The
name attribute in the <variable> block must either be the app’s name prepended to the full
MooseBasedApp model variable name, the alias name specifed in <Models>, or the variable
name specified in the provided alias files.

For listings of available samplers, please refer to the Samplers chapter (see 10). See the follow-
ing for an example of a grid based sampler used to generate the samples for the first energy group
fission and capture cross sections (both of which have defined in alias files provided in <Files>),
the initial condition temperature defined in Rattlesnake input file and the poissons ratio, clad thick-
ness, and gap width defined in Bison input files with clad and gap parameters calculated using an
external function with sampled clad inner and outer diameters as inputs.
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<Samplers>
<Grid name="Grid_sampling">

<variable name="Rattlesnake@fission_group_1" >
<distribution>fission_dist</distribution>
<grid type="value" construction="custom">1.0 2.0</grid>

</variable>
<variable name="Rattlesnake@capture_group_1">

<distribution>capture_dist</distribution>
<grid type="value" construction="custom">3.0 6.0</grid>

</variable>
<variable

↪→ name="Rattlesnake@AuxVariables|Temp|initial_condition">
<distribution>uniform</distribution>
<grid type="value" construction="custom">3.0 6.0</grid>

</variable>
<variable

↪→ name="Bison@Materials|fuel_solid_mechanics_elastic|poissons_ratio">
<distribution>normal</distribution>
<grid type="value" construction="custom">3.0 6.0</grid>

</variable>
<variable name='clad_outer_diam'>

<distribution>clad_outer_diam_dist</distribution>
<grid construction='equal' steps='144' type='CDF'>0.02275

↪→ 0.97725</grid>
</variable>
<variable name='clad_inner_diam'>

<distribution>clad_inner_diam_dist</distribution>
<grid construction='equal' steps='144' type='CDF'>0.02275

↪→ 0.97725</grid>
</variable>
<variable name='Bison@Mesh|clad_thickness'>

<function>clad_thickness_calc</function>
</variable>
<variable name='Bison@Mesh|clad_gap_width'>

<function>clad_gap_width_calc</function>
</variable>

</Grid>
</Samplers>

In order to make the input variables of one application distinct from input variables of another, an
app’s name followed by the ’@’ symbol is prepended to the variable name (e.g. ’appName@varName’).
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Each variable to be used in an app’s input file and sampled in the MAMMOTH interface is required
to have a destination app specified. All variables utilizing Rattlesnake’s executable (whether they
are in the Rattlesnake input file or not) are listed as Rattlesnake variables as that application’s in-
terface will sort input file and cross section variables itself. Notice that the clad inner and outer
diameter sampled parameters have no app name specified. These parameters are utilized to sample
values used as inputs for the clad thickness and gap width variables in BISON, so by not specify-
ing a destination app, these are passed through the interface having only been used in an external
function to calculate parameters usable in an app’s input.

19.12.4 Steps

For a MAMMOTH interface run, the <MultiRun> step type will most likely be used. First, the
step needs to be named: this name will be one of the names used in the <Sequence> block. In
our example, ’Grid Mammoth’.

<MultiRun name='Grid_Mammoth' verbosity='debug'>
<Input class='Files' type=''>mammothInput</Input>
<Input class='Files' type=''>crossSection</Input>
<Input class='Files' type=''>alias</Input>
<Input class='Files' type=''>bisonInput</Input>
<Input class='Files' type=''>bisonMesh</Input>
<Input class='Files' type=''>fuelCTEfunct</Input>
<Input class='Files' type=''>rattlesnakeMesh</Input>
<Model class='Models' type='Code'>Mammoth</Model>
<Sampler class='Samplers'

↪→ type='Grid'>Grid_Samplering</Sampler>
<Output class='DataObjects' type='PointSet'>solns</Output>

</MultiRun>

With this step, we need to import all the files needed for the simulation:

• MAMMOTH—Rattlesnake YAML input file;

• Yak multigroup cross section libraries input files (XML);

• Yak alias files used to define the perturbed variables (XML);

• Bison YAML input file;

• Bison mesh file;

• Bison function file for the fuel’s coefficient of thermal expansion as a function of tempera-
ture;
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• Rattlesnake mesh file.

As well as <Model>, <Sampler> and outputs, such as <OutStreams> and <DataObjects>.

19.13 MELCOR Interface

The current implementation of MELCOR interface is valid for MELCOR 2.1/2.2; its validity for
MELCOR 1.8 is not been tested.

19.13.1 Sequence

In the <Sequence> section, the names of the steps declared in the <Steps> block should be
specified. As an example, if we called the first multirun “Grid Sampler” and the second multirun
“MC Sampler” in the sequence section we should see this:

<Sequence>Grid_Sampler,MC_Sampler</Sequence>

19.13.2 batchSize and mode

For the <batchSize> and <mode> sections please refer to the <RunInfo> block in the previ-
ous chapters.

19.13.3 RunInfo

After all of these blocks are filled out, a standard example RunInfo block may look like the example
below:

<RunInfo>
<WorkingDir>˜/workingDir</WorkingDir>
<Sequence>Grid_Sampler,MC_Sampler</Sequence>
<batchSize>8</batchSize>

</RunInfo>

In this example, the <batchSize> is set to 8; this means that 8 simultaneous (parallel) instances
of MELCOR are going to be executed when a sampling strategy is employed.
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19.13.4 Files

In the <Files> section, as specified before, all of the files needed for the code to run should be
specified. In the case of MELCOR, the files typically needed are:

• MELCOR Input file (file extension “.i” or “.inp”)

• Restart file (if present)

Example:

<Files>
<Input name='melcorInputFile' type=''>inputFileMelcor.i</Input>
<Input name='aRestart' type=''>restartFile</Input>

</Files>

It is a good practice to put inside the working directory (<WorkingDir>) all of these files.

It is important to notice that the interface output collection (i.e. the parser of the MEL-
COR output) currently is able to extract CONTROL VOLUME HYDRODYNAMICS EDIT
AND CONTROL FUNCTION EDIT data only. Only those variables are going to be exported
and make available to RAVEN. In addition, it is important to notice that:

• the simulation time is stored in a variable called “time”;

• all the variables specified in the CONTROL VOLUME HYDRODYNAMICS EDIT block
are going to be converted using underscores. For example, the following EDITs:

VOLUME PRESSURE TLIQ TVAP MASS
PA K K KG

1 1.00E+07 584.23 584.23 1.66E+03

will be converted in the following way (CSV):

time volume 1 PRESSURE volume 1 TLIQ volume 1 TV AP volume 1 MASS
1.0 1.00E+07 584.23 584.23 1.66E+03

CONTROL FUNCTION EDIT data will not be converted in this manner. All data will be
labeled using a label identical to what was entered in the MELCOR input file, with no changes.

Remember also that a MELCOR simulation run is considered successful (i.e., the simulation
did not crash) if it terminates with the following message:
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Normal termination

If the a MELCOR simulation run stops with messages other than this one than the simulation
is considered as crashed, i.e., it will not be saved. Hence, it is strongly recommended to set up
the MELCOR input file so that the simulation exiting conditions are set through control logic trip
variables.

19.13.5 Models

For the <Models> block here is a standard example of how it would look when using MELCOR
2.1/2.2 as the external code:

<Models>
<Code name='MyMELCOR' subType='Melcor'>

<executable>˜/path_to_the_executable_of_melcor</executable>
<preexec>˜/path_to_the_executable_of_melgen</preexec>

</Code>
</Models>

As it can be seen above, the <preexec> node must be specified, since MELCOR 2.1/2.2 must run
the MELGEN utility code before executing. Once the <preexec> node is inputted, the execution
of MELGEN is performed automatically by the Interface.
In addition, if some command line parameters need to be passed to MELCOR, the user might use
(optionally) the <clargs> XML nodes.

<Models>
<Code name='MyMELCOR' subType='Melcor'>

<executable>˜/path_to_the_executable_of_melcor</executable>
<preexec>˜/path_to_the_executable_of_melgen</preexec>
<clargs type="text" arg="-r whatever command line

↪→ instruction"/>
</Code>

</Models>

19.13.6 Distributions

The <Distribution> block defines the distributions that are going to be used for the sampling
of the variables defined in the <Samplers> block. For all the possible distributions and all their
possible inputs please see the chapter about Distributions (see 9). Here we report an example of a
Normal distribution:
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<Distributions verbosity='debug'>
<Normal name="temper">

<mean>1.E+7</mean>
<sigma>1.5</sigma>
<upperBound>9.E+6</upperBound>
<lowerBound>1.1E+7</lowerBound>

</Normal>
</Distributions>

It is good practice to name the distribution something similar to what kind of variable is going
to be sampled, since there might be many variables with the same kind of distributions but different
input parameters.

19.13.7 Samplers

In the <Samplers> block we want to define the variables that are going to be sampled. Example:
We want to do the sampling of 1 single variable:

• The in pressure (P in) of a control volume regulated by a Tabular Function TF TAB

We are going to sample this variable using two different sampling methods: Grid and Monte-
Carlo.

The interface of MELCOR uses the GenericCode (see section 19.1) interface for the input
perturbation; this means that the original input file (listed in the <Files> XML block) needs to
implement wild-cards. In this example we are sampling the variable:

• PRE, which acts on the Tabular Function TF TAB whose TF ID is P in.

We proceed to do so for both the Grid sampling and the MonteCarlo sampling.

<Samplers verbosity='debug'>
<Grid name='Grid_Sampler' >

<variable name='PRE'>
<distribution>temper</distribution>
<grid type='CDF' construction='equal' steps='10'>0.001

↪→ 0.999</grid>
</variable>

</Grid>
<MonteCarlo name='MC_Sampler'>
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<samplerInit>
<limit>1000</limit>

</samplerInit>
<variable name='PRE'>

<distribution>temper</distribution>
</MonteCarlo>

</Samplers>

It can be seen that each variable is connected with a proper distribution defined in the
<Distributions> block (from the previous example). The following demonstrates how the
input for the variable is read.

We are sampling a variable whose wild-card in the original input file is named $RAV EN −
PRE$ using a Grid sampling method. The distribution that this variable is following is a Normal
distribution (see section above). We are sampling this variable beginning from 0.001 (CDF) in 10
equal steps of 0.0998 (CDF).

19.13.8 Steps

For a MELCOR interface, the <MultiRun> step type will most likely be used. First, the step
needs to be named: this name will be one of the names used in the <sequence> block. In our
example, Grid Sampler and MC Sampler.

<MultiRun name='Grid_Sampler' verbosity='debug'>

With this step, we need to import all the files needed for the simulation:

• MELCOR input file

• any other file needed by the calculation (e.g. restart file)

<Input class='Files' type=''>inputFileMelcor.i</Input>
<Input class='Files' type=''>restartFile</Input>

We then need to define which model will be used:

<Model class='Models' type='Code'>MyMELCOR</Model>

We then need to specify which Sampler is used, and this can be done as follows:

<Sampler class='Samplers' type='Grid'>Grid_Sampler</Sampler>
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And lastly, we need to specify what kind of output the user wants. For example the user might want
to make a database (in RAVEN the database created is an HDF5 file). Here is a classical example:

<Output class='Databases' type='HDF5'>Grid_out</Output>

Following is the example of two MultiRun steps which use different sampling methods (Grid and
Monte Carlo), and creating two different databases for each one:

<Steps verbosity='debug'>
<MultiRun name='Grid_Sampler' verbosity='debug'>

<Input class='Files' type=''>inputFileMelcor.i</Input>
<Input class='Files' type=''>restartFile</Input>
<Model class='Models' type='Code'>MyMELCOR</Model>
<Sampler class='Samplers' type='Grid'>Grid_Sampler</Sampler>
<Output class='Databases' type='HDF5'>Grid_out</Output>
<Output class='DataObjects' type='PointSet'

↪→ >GridMelcorPointSet</Output>
<Output class='DataObjects'

↪→ type='HistorySet'>GridMelcorHistorySet</Output>
</MultiRun>
<MultiRun name='MC_Sampler' verbosity='debug'

↪→ re-seeding='210491'>
<Input class='Files' type=''>inputFileMelcor.i</Input>
<Input class='Files' type=''>restartFile</Input>
<Model class='Models' type='Code'>MyMELCOR</Model>
<Sampler class='Samplers'

↪→ type='MonteCarlo'>MC_Sampler</Sampler>
<Output class='Databases' type='HDF5' >MC_out</Output>
<Output class='DataObjects' type='PointSet'

↪→ >MonteCarloMelcorPointSet</Output>
<Output class='DataObjects'

↪→ type='HistorySet'>MonteCarloMelcorHistorySet</Output>
</MultiRun>

</Steps>

19.13.9 Databases

As shown in the <Steps> block, the code is creating two database objects called Grid out and
MC out. So the user needs to input the following:

<Databases>
<HDF5 name="Grid_out" readMode="overwrite"/>
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<HDF5 name="MC_out" readMode="overwrite"/>
</Databases>

As listed before, this will create two databases. The files will have names corresponding to their
name appended with the .h5 extension (i.e. Grid out.h5 and MC out.h5).

19.13.10 DataObjects

As shown in the <Steps> block, the code is creating 4 data objects (2 HistorySet and 2 PointSet)
called GridMelcorPointSet GridMelcorHistorySet MonteCarloMelcorPointSet
and MonteCarloMelcorHistorySet. So the user needs to input the following block as well,
where the Input and Output variables are listed:

<DataObjects>
<PointSet name="GridMelcorPointSet">

<Input>PRE</Input>
<Output>
time,volume_1_PRESSURE,volume_1_TLIQ,
volume_1_TVAP,volume_1_MASS

</Output>
</PointSet>
<HistorySet name="GridMelcorHistorySet">

<Input>PRE</Input>
<Output>
time,volume_1_PRESSURE,volume_1_TLIQ,
volume_1_TVAP,volume_1_MASS

</Output>
</HistorySet>
<PointSet name="MonteCarloMelcorPointSet">

<Input>PRE</Input>
<Output>
time,volume_1_PRESSURE,volume_1_TLIQ,
volume_1_TVAP,volume_1_MASS

</Output>
</PointSet>
<HistorySet name="MonteCarloMelcorHistorySet">

<Input>PRE</Input>
<Output>
time,volume_1_PRESSURE,volume_1_TLIQ,
volume_1_TVAP,volume_1_MASS

</Output>
</HistorySet>
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</DataObjects>

As mentioned before, this will create 4 DataObjects.

19.14 SCALE Interface

This section presents the main aspects of the interface between RAVEN and SCALE system, the
consequent RAVEN input adjustments and the modifications of the SCALE files required to run
the two coupled codes.
Note: Considering the large amount of SCALE sequences, this interface is currently limited in

driving the following SCALE calculation codes:

• ORIGEN

• TRITON (using NEWT as transport solver)

In the following sections a short explanation on how to use RAVEN coupled with SCALE is
reported.

19.14.1 Models

As for any other Code, in order to activate the SCALE interface, a <Code> XML node needs to
be inputted, within the main XML node <Models>.
The <Code> XML node contains the information needed to execute the specific External Code.

This XML node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, specifies the code that needs to be associated to this
Model. Note: See Section 19 for a list of currently supported codes.

This model can be initialized with the following children:

• <executable> string, required field specifies the path of the executable to be used.
Note: Either an absolute or relative path can be used.

• <alias> string, optional field specifies alias for any variable of interest in the input or
output space for the Code. These aliases can be used anywhere in the RAVEN input to refer
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to the Code variables. In the body of this node the user specifies the name of the variable
that the model is going to use (during its execution). The actual alias, usable throughout the
RAVEN input, is instead defined in the variable attribute of this tag.
The user can specify aliases for both the input and the output space. As sanity check, RAVEN
requires an additional required attribute type. This attribute can be either “input” or “out-
put”. Note: The user can specify as many aliases as needed.
Default: None

In addition (and specifc for the SCALE interface), the <Code> can contain the following
optional nodes:

• <sequence>, optional, comma separated list. In this node the user can specify a list of
sequences that need to be executed in sequence. For example, if a TRITON calculation
needs to be followed by an ORIGEN decay heat calculation the user would input here the
sequence “triton,origen”.
Default: triton.
Note: Currently only the following entries are supported:

– “triton”

– “origen”

– “triton,origen”

• <timeUOM>, optional, string. In this node the user can specify the units for the independent
variable “time”. If the outputs are exported by SCALE in a different unit (e.g days, years,
etc.), the SCALE interface will convert all the different time scales into the unit here specified
(in order to have a consistent (and unique) time scale). Available are:

– “s”, seconds

– “m”, minutes

– “h”, hours

– “d”, days

– “y”, years

Default: s

An example is shown below:

<Models>
<Code name="MyScale" subType="Scale">

<executable>path/to/scalerte</executable>
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<sequence>triton,origen</sequence>
<timeUOM>d</timeUOM>

</Code>
</Models>

19.14.2 Files

The <Files> XML node has to contain all the files required by the particular sequence (s) of the
external code (SCALE) to be run. This involves not only the input file(s) (.inp) but also the auxil-
iary files that might be needed (e.g. binary initial compositions, etc.). As mentioned, the current
SCALE interface only supports TRITON and ORIGEN sequences. For this reason, depending on
the type of sequence (see previous section) to be run, the relative input files need to be marked
with the sequence they are associated with. This means that the type of the input file must be either
“triton” or “origen”. The auxiliary files that might be needed by a particular sequence (e.g. binary
initial compositions, etc.) should not be marked with any specific type (i.e. type=“”). Example:

<Files>
<Input name="triton_input"

↪→ type="triton">pwr_depletion.inp</Input>
<Input name="origen_input" type="origen">decay_calc.inp</Input>
<Input name="binary_comp" type="">pwr_depletion.f71</Input>

</Files>

The files mentioned in this section need, then, to be placed into the working directory specified by
the <workingDir> node in the <RunInfo> XML node.

19.14.2.1 Output Files conversion

Since RAVEN expects to receive a CSV file containing the outputs of the simulation, the results in
the SCALE output files need to be converted by the code interface.
As mentioned, the current interface is able to collect data from TRITON and ORIGEN sequences
only.
The following information is collected from TRITON output:

• k-eff and k-inf time-dep information
Oute r E i g e n v a l u e E i g e n v a l u e Max Flux Max Flux Max Fue l Max Fue l Wall E l a p s e d I t e r a t i o n CPU I n n e r s

I t e r . # D e l t a D e l t a L o c a t i o n ( r , g ) D e l t a L o c a t i o n ( r , g ) Clock CPU Time CPU Time Usage Converged
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 1 .00000 0 .000E+00 6 .480E+09 ( 4 , 2 5 2 ) 1 .000E+00 ( 614 , 0 ) 1 4 : 1 6 : 4 2 8 9 . 9 s 8 9 . 9 s 92.7% F
2 0 .35701 1 .801E+00 4 .149E+01 ( 319 , 4 ) 2 .673E+00 ( 7035 , 0 ) 1 4 : 1 8 : 1 6 182 .8 s 9 2 . 9 s 98.8% F

k−e f f = 0 .94724509 Time= 0 . 0 0 d Nominal c o n d i t i o n s

Four−F a c t o r E s t i m a t e o f k−i n f i n i t y . F a s t / Thermal boundary : 0 .6250 eV
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F i s s . n e u t r o n s / t h e r m a l abs . ( e t a ) : 1 .279827
Thermal u t i l i z a t i o n ( f ) : 0 .960903
Resonance Escape p r o b a b i l i t y ( p ) : 0 .706209
Fas t−f i s s i o n f a c t o r ( e p s i l o n ) : 1 .091716

−−−−−−−−−−−−−−
I n f i n i t e n e u t r o n m u l t i p l i c a t i o n 0 .948143

that will be converted in the following way (CSV):

Table 14: CSV transport info

time keff iter number keff delta max flux delta kinf kinf epsilon kinf p kinf f kinf eta
0.00 0.94724509 2 1.801E+00 4.149e+01 0.948143 1.091716 0.706209 0.960903 1.279827

• material powers
−−− M a t e r i a l powers f o r d e p l e t i o n pass no . 1 (MW/MITHM) −−−

Time = 0 . 0 0 days ( 0 .000 y ) , Burnup = 0 .000 GWd/MTIHM, T r a n s p o r t k= 0 .9473

T o t a l F r a c t i o n a l Mix tu re Mix tu re Mix tu re
Mix tu re Power Power Power Thermal Flux T o t a l F lux

Number (MW/MTIHM) (−−−) (MW/MTIHM) n / ( cmˆ2* s e c ) n / ( cmˆ2* s e c )
13 32 .985 0 .99054 32 .985 5 .3666 e +13 1 .2574 e +14

6 0 .252 0 .00757 N/A 2 .7587 e +13 9 .1781 e +13
T o t a l 33 .300 1 .00000

that will be converted in the following way (CSV):

Table 15: CSV material powers

time bu tot power mix 13 fract power mix 13 th flux mix 13 tot flux mix 13 tot power mix 6 fract power mix 6 th flux mix 6 tot flux mix 6
1.0E-06 0.0 32.985 0.99054 5.3666e+13 1.2574e+14 0.252 0.00757 2.7587e+13 9.1781e+13

• nuclide/element tables
| n u c l i d e c o n c e n t r a t i o n s
| t ime : days

grams | 0 . 0 0 e +00d
−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−

u235 | 2 .9619 e +04
u238 | 9 .6993 e +05

s u b t o t a l | 1 .0010 e +06
t o t a l | 1 .1858 e +06

that will be converted in the following way (CSV):

Table 16: CSV Nuclide/element Tables

time u235 conc u238 conc
0.00 2.9619e+04 9.6993e+05

The following information is collected from ORIGEN output:

• history overview
=========================================================================================================================
= H i s t o r y ove rv iew f o r c a s e ' decay ' ( # 1 / 1 ) =
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s t e p t 0 t 1 d t t f l u x f l u e n c e power e ne r gy
(−) ( s e c ) ( s e c ) ( s ) ( s ) ( n / cm2−s ) ( n / cm2 ) (MW) (MWd)

1 0 .0000E+00 1 .0000E−06 1 .0000E−06 1 .0000E−06 0 .0000E+00 0 .0000E+00 0 .0000E+00 0 .0000E+00
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Table 17: CSV History Overview

time t0 t1 dt flux fluence power energy
1.0E-06 0.0 1.0E-06 1.0E-06 0.0 0.0 0.0 0.0

that will be converted in the following way (CSV):

• concentration tables
=========================================================================================================================
= N u c l i d e c o n c e n t r a t i o n s in w a t t s , a c t i n i d e s f o r c a s e ' decay ' ( # 1 / 1 ) =
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

( r e l a t i v e c u t o f f ; i n t e g r a l o f c o n c e n t r a t i o n s ove r t ime > 1 . 0 0 E−04 % of i n t e g r a l o f a l l c o n c e n t r a t i o n s ove r t ime )
.

0 . 0 E+00 s e c 1 . 0 E−06s e c
th231 8 .6167E−08 8 .6167E−08
th234 7 .7763E−09 7 .7763E−09

−−−−−−−−−−−−
t o t a l s 4 .6831E+03 4 .6831E+03

=========================================================================================================================
.
.
=========================================================================================================================
= N u c l i d e c o n c e n t r a t i o n s in w a t t s , f i s s i o n p r o d u c t s f o r c a s e ' decay ' ( # 1 / 1 ) =
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

( r e l a t i v e c u t o f f ; i n t e g r a l o f c o n c e n t r a t i o n s ove r t ime > 1 . 0 0 E−04 % of i n t e g r a l o f a l l c o n c e n t r a t i o n s ove r t ime )
.

0 . 0 E+00 s e c 1 . 0 E−06s e c
ga74 2 .4264E−01 2 .4264E−01
ga75 1 .8106E+00 1 .8106E+00

−−−−−−−−−−−−
t o t a l s 1 .2266E+06 1 .2266E+06

that will be converted in the following way (CSV):

Table 18: CSV Concentration Tables

time ga74 watts ga75 watts subtotals fission products th231 watts th234 watts subtotals actinides totals watts
0.0E+00 2.4264E-01 1.8106E+00 1.2266E+06 8.6167E-08 7.7763E-09 4.6831E+03 1.2313E+06
1.0E-06 2.4264E-01 1.8106E+00 1.2266E+06 8.6167E-08 7.7763E-09 4.6831E+03 1.2313E+06

Remember also that a SCALE simulation run is considered successful (i.e., the simulation
did not crash) if it does not contain, in the last 20 lines, the following message:

terminated due to errors

If the a SCALE simulation terminates with this message, the simulation is considered
“failed”, i.e., it will not be saved.

19.14.3 Samplers or Optimizers

In the <Samplers> or <Optimizers> block we want to define the variables that are going to
be sampled or optimized.
The perturbation or optimization of the input of any SCALE sequence is performed using the
approach detailed in the Generic Interface section (see 19.1). Briefly, this approach uses “wild-
cards” (placed in the original input files) for injecting the perturbed values. For example, if the
original input file (that needs to be perturbed) is the following:
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=origen
case(actual_mass){

lib{ file="end7dec" }
mat{ iso=[zr-95=1.0] units="moles" }
time=[1.0] %1 day

}
end

and the initial moles of “zr-95” need to be perturbed, a RAVEN “wild-card” will be defined:

=origen
case(actual_mass){

lib{ file="end7dec" }
mat{ iso=[zr-95=$RAVEN-zrMoles$] units="moles" }
time=[1.0] %1 day

}
end

Finally, the variable zrMoles needs to be specified in the specific Sampler or Optimizer that
will be used:

...
<Samplers>

<aSampler name='aUserDefinedName' >
<variable name='zrMoles'>

...
</variable>

</aSampler>
</Samplers>
...
<Optimizers>

<anOptimizer name='aUserDefinedName' >
<variable name='zrMoles'>

...
</variable>

</anOptimizer>
</Samplers>
...
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19.15 CTF Interface

This section presents the main aspects of the interface between RAVEN and CTF (COBRA-TF)
system, the consequent RAVEN input adjustments and the modifications of the CTF files required
to run the two coupled codes.

Note: This interface is currently working only with the specific type of CTF output file (.ctf.out
or deck.out (if input file name is deck.inp))

In the following sections a short explanation on how to use RAVEN coupled with CTF is reported.

19.15.1 Sequence

In the <Sequence> section, the names of the steps declared in the <Steps> block should be
specified. As an example, if we called the first MultiRun “Grid Sampler” and the second MultiRun
“MC Sampler” in the sequence section we should see this:

<Sequence>Grid_Sampler, MC_Sampler</Sequence>

19.15.2 batchSize and mode

For the <batchSize> and <mode> sections please refer to the <RunInfo> block in the previ-
ous chapters.

19.15.3 RunInfo

After all of these blocks are filled out, a standard example RunInfo block may look like the exam-
ple below:

<RunInfo>
<WorkingDir>˜/workingDir</WorkingDir>
<Sequence>Grid_Sampler,MC_Sampler</Sequence>
<batchSize>8</batchSize>

</RunInfo>

In this example, the <batchSize> is set to 8; this means that 8 simulatenous (parallel) instances
of CTF are going to be executed when a sampling strategy is employed.
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19.15.4 Models

As any other Code, in order to activate the CTF interface, a <Code> XML node needs to be
inputted, within the main XML node <Models>.
The <Code> XML node contains the information needed to execute the specific External Code.

This XML node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, specifies the code that needs to be associated to this
Model. Note: See Section 19 for a list of currently supported codes.

This model can be initialized with the following children:

• <executable> string, required field specifies the path of the executable to be used.
Note: Either an absolute or relative path can be used.

• <alias> string, optional field specifies alias for any variable of interest in the input or
output space for the Code. These aliases can be used anywhere in the RAVEN input to refer
to the Code variables. In the body of this node the user specifies the name of the variable
that the model is going to use (during its execution). The actual alias, usable throughout the
RAVEN input, is instead defined in the variable attribute of this tag.
The user can specify aliases for both the input and the output space. As sanity check, RAVEN
requires an additional required attribute type. This attribute can be either “input” or “out-
put”. Note: The user can specify as many aliases as needed.
Default: None

An example is shown below:

<Models>
<Code name="MyCobraTF" subType="CTF">

<executable>path/to/cobratf</executable>
</Code>

</Models>

19.15.5 Files

The <Files> XML node has to contain all the files required to run the external code (CTF). For
RAVEN coupled with CTF, there are three input files. CTF input file (.inp) is required by the code.
This input file includes all the geometry, boundary and calculation definitions.
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There are two additional files (optional) that can be used for model parameter perturbation(s)
(vuq param.txt, vuq mult.txt). These two files can be used to change variables of models embed-
ded in CTF. The ”vuq param.txt” file includes parameter values, and ”vuq mult.txt” file includes
multipliers or additions to parameters. These files are not required by CTF unless a parameter
exposure is desired. One, both or neither of them can be included in the simulation folder. The
code first controls if these files exist and does modifications accordingly if needed.

The <Files> XML node contains the information needed to execute CTF.

This XML node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• type, required string attribute, specifies the input type used by CTF (ctf, vuq mult, vuq param).
Accepted types are as follows.

– CTF, required string attribute, identifies the CTF input file (geometry, boundary, cal-
culation options, etc.) and the code currently accept any name for input. One CTF
input file is required.

– vuq mult, optional string attribute if closure modifiers are used, identifies the closure
term multiplier input file. If user needs to alter closure terms this file should be used
and named vuq mult.txt. No other file name is accepted.

– vuq param, optional string attribute if model parameter modifiers are used, identifies
the model parameter input file. If user needs to change model parameters this file this
model should be used and named vuq params.txt. No other file name is accepted.

– ””, Empty type is also accepted by RAVEN input to perturb. Currently, CTF does not
use any other input file that is not mentioned above, but to sample auxiliary files, this
option can be used.

Example:

<Files>
<Input name="CTF_input" type="ctf">case1.inp</Input>
<Input name="vuq_param_input"

↪→ type="vuq_param">vuq_param.txt</Input>
<Input name="vuq_mult_input"

↪→ type="vuq_mult">vuq_mult.txt</Input>
<Input name="auxiliary_input" type="">auxiliaryInput</Input>

</Files>

The files mentioned in this section need, then, to be placed into the working directory specified by
the <workingDir> node in the <RunInfo> XML node.
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19.15.5.1 Output Files Conversion

Since RAVEN expects to receive a CSV file containing the outputs of the simulation, the results in
the CTF output files (.ctf.out or deck.out) need to be converted by the code interface.

It is important to note that the interface output collection (i.e., the parser of the CTF output)
is currently able to extract major edit data (.ctf.out or deck.out) only. Only those variables
printed in the ”major edit” output files are exported and made available to RAVEN.

The following information is collected from CTF output file (.ctf.out or deck.out):

• average properties for channels

************************************************************************************************************************
s i m u l a t i o n t ime = 1 .03030 s e c o n d s a v e r . p r o p e r t i e s f o r c h a n n e l s

node d i s t . q u a l i t y vo id f r a c t i o n mass f low e n t h a l p y i n c r . e n t h a l p y h e a t added
no . ( f t . ) ( lbm / s ) ( b t u / s ) ( b t u / s ) ( b t u / s )

l i q . vapor e n t r . l i q u i d vapor e n t r . i n t e g r . l i q u i d vapor i n t e g r . m i x t u r e l i q u i d vapor i n t e g r .

50 12 .00 −.119 1 .000 0 .000 0 .000 16 .39 0 . 0 0 0 . 0 0 16 .39 32 .41 0 . 0 0 32 .41 10683 .98 32 .37 0 . 0 0 32 .37

that will be converted in the following way (CSV):

Table 19: CSV transport info (average properties for channels)

time AVG ch ax50 quality AVG ch ax50 voidFractionLiquid AVG ch ax50 voidFractionVapor AVG ch ax50 volumeEntrainFraction ...
1.03030 -.119 1.000 0.000 0.000 ...

• fluid properties for each sub-channel
s i m u l a t i o n t ime = 0 .00000 s e c o n d s f l u i d p r o p e r t i e s f o r c h a n n e l 19

node d i s t . p r e s s u r e v e l o c i t y vo id f r a c t i o n f low r a t e f low h e a t added gama
no . ( f t . ) ( p s i ) ( f t / s e c ) ( lbm / s ) r e g . ( b t u / s ) ( lbm / s )

l i q u i d vapor e n t r . l i q u i d vapor e n t r . l i q u i d vapor e n t r . l i q u i d vapor

155 0 . 0 0 1251 .687 2 . 6 6 2 . 6 6 0 . 0 1 1 .0000 0 .0000 0 .0000 0 .12456 0 .0000 0 .00000 0 0 .595E−01 0 .000E+00 0 . 0 0

that will be converted in the following way (CSV):

Table 20: CSV transport info (fluid properties for channels)

time ch19 ax155 pressure ch19 ax155 velocityLiquid ch19 ax155 velocityVapor ch19 ax155 velocityEntrain ch19 ax155 voidFractionLiquid ...
0.00 1251.687 2.66 2.66 0.01 1.00 ...

• nuclear fuel rod
n u c l e a r f u e l rod no . 1 s i m u l a t i o n t ime = 0 . 0 0 s e c o n d s

s u r f a c e no . 1 o f 1
−−−−−−−−−−−−−−−−−−−−−−− c o n d u c t s h e a t t o c h a n n e l s 1 0 0 0 0 0 geomet ry type = 1

and a z i m u t h a l l y t o s u r f a c e s 1 and 1 no . o f r a d i a l nodes = 13

**********************************************************************************************

rod a x i a l f l u i d t e m p e r a t u r e s s u r f a c e h e a t −c l a d t e m p e r a t u r e s− gap −f u e l t e m p e r a t u r e s−
node l o c a t i o n ( deg−f ) h e a t f l u x t r a n s f e r ( deg−f ) c o n d u c t a n c e ( deg−f )
no . ( in . ) l i q u i d vapor ( b / h−f t 2 ) mode o u t s i d e i n s i d e ( b / h−f t 2−f ) s u r f a c e c e n t e r
−−−− −−−−−−−− −−−−−− −−−−− −−−−−−−−− −−−−−−−− −−−−−−− −−−−−− −−−−−−−−−−− −−−−−−− −−−−−−

10 22 .80 464 .1 467 .1 0 .5929E+04 s p l 466 .08 592 .98 1594 .2 859 .58 2946 .22
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that will be converted in the following way (CSV):

Table 21: CSV transport info (nuclear fuel rod)

time fuelRod10 surface1 ax10 fluidTemperatureLiquid fuelRod10 surface1 ax10 fluidTemperatureVapor ...
0.00 464.1 467.1 ...

• cyclindrical tube
Warning: CTF reports results for cylindrical tubes based on the flow type. Not every
result will be available depending on the internal or external flow type. Check output
file and see if the flow around heat slab is internal or external. If the user requests
values that are not in the output file reported values will be from different columns
and wrong. For example there is no outside surface liquid temperature when flow is
internal.

c y l i n d r i c a l t u b e rod no . 5 s i m u l a t i o n t ime = 2 . 0 0 s e c o n d s
s u r f a c e no . 1 o f 4

−−−−−−−−−−−−−−−−−−−−−−−− c o n d u c t s h e a t t o c h a n n e l s 10 0 0 0 0 0 geomet ry type = 2
and a z i m u t h a l l y t o s u r f a c e s 4 and 2 no . o f r a d i a l nodes = 2

**********************************************************************************************************************

rod a x i a l *−−−−−−−−−−−−−− o u t s i d e s u r f a c e −−−−−−−−−−−−−−−−* *−−−−−−−−−−−−−−−− i n s i d e s u r f a c e −−−−−−−−−−−−−−−−*
node l o c a t i o n h e a t f l u x h . t . **** t e m p e r a t u r e s ( deg−f ) **** **** t e m p e r a t u r e s ( deg−f ) **** h . t . h e a t f l u x
no . ( in . ) ( b / h−f t 2 ) mode w a l l vapor l i q u i d l i q u i d vapor w a l l mode ( b / h−f t l )
−−−− −−−−−−−− −−−−−−−−− −−−− −−−−−−− −−−−−−− −−−−−−− −−−−−−− −−−−−−− −−−−−−−

51 144 .00 −0.4424E+03 s p l 629 .71 653 .31 629 .77 629 .68 0 .0000E+00

that will be converted in the following way (CSV):

Table 22: CSV transport info (cylindrical tube)

time cylRod10 surface1 ax51 outsideSurfaceHeatFlux cylRod10 surface1 ax51 outsideSurfaceWallTemperature ...
0.00 -0.4424E+03 629.71 ...

• heat slab (tube)
Warning: CTF reports results for heat slabs based on the flow type. Not every result
will be available depending on the internal or external flow type. Check output file and
see if the flow around heat slab is internal or external. If the user requests values that
are not in the output file reported values will be from different columns and wrong. For
example there is no outside surface liquid temperature when flow is internal.

h e a t s l a b no . 1 ( t u b e ) s i m u l a t i o n t ime = 20 .00 s e c o n d s
f l u i d c h a n n e l on i n s i d e s u r f a c e = 1
f l u i d c h a n n e l on o u t s i d e s u r f a c e = 0
geomet ry type = 1
no . o f nodes = 2

***************************************************************************************************************

rod a x i a l *−−−−−−−−−−−−− o u t s i d e s u r f a c e −−−−−−−−−−−−* *−−−−−−−−−−−−−− i n s i d e s u r f a c e −−−−−−−−−−−−−−−−*
node l o c a t i o n h e a t f l u x h . t . ** t e m p e r a t u r e s ( deg−f ) ** ** t e m p e r a t u r e s ( deg−f ) **** h . t . h e a t f l u x
no . ( in . ) ( b / h−f t 2 ) mode w a l l vapor l i q u i d l i q u i d vapor w a l l mode ( b / h−f t l )
−−−− −−−−−−−− −−−−−−−−− −−−− −−−−−− −−−−−−− −−−−−−−−−−−−−− −−−−−−− −−−−−−−

21 19 .69 999666E+00 200 .00 212 .00 212 .00 247 .85 t r a n 0 .2641E+02

599



that will be converted in the following way (CSV):

Table 23: CSV transport info (heat slab (tube) tube)

time heatSlab1 ax21 outsideSurfaceHeatFlux heatSlab1 ax21 outsideSurfaceWallTemperature ...
0.00 999666E+00 200.00 ...

• CTF’s Output Variables and Corresponding Names in CSV file

In CSV file, the output results obtained from the CTF output file (.ctf.out) will be saved with
the names as described in Table 24.

Table 24: Variables Name List in CSV File
NN: Axial Node Number; CN: Channel Number;

RN: Rod Number; SN: Surface Number: HN: Heat Slab Number

Output Variable Name in CSV file
simulation time time
channels’ average height AVG ch axNN height
channels’ average quality AVG ch axNN quality
channels’ average void fraction (liquid) AVG ch axNN voidFractionLiquid
channels’ average void fraction (vapor) AVG ch axNN voidFractionVapor
channels’ average entrainment (volumetric) fraction AVG ch axNN volumeEntrainFraction
channels’ average mass flow rate (liquid) AVG ch axNN massFlowRateLiquid
channels’ average mass flow rate (vapor) AVG ch axNN massFlowRateVapor
channels’ average entrainment rate (mass flow rate) AVG ch axNN massFlowRateEntrain
channels’ average mass flow rate (integrated) AVG ch axNN massFlowRateIntegrated
channels’ average enthalpy increase (liquid) AVG ch axNN enthalpyIncreaseLiquid
channels’ average enthalpy increase (vapor) AVG ch axNN enthalpyIncreaseVapor
channels’ average enthalpy increase (integrated) AVG ch axNN enthalpyIncreaseIntegrated
channels’ average mixture enthalpy AVG ch axNN enthalpyMixture
channels’ average heat added to liquid AVG ch axNN heatAddedToLiquid
channels’ average heat added to vapor AVG ch axNN heatAddedToVapor
channels’ average heat added (integrated) AVG ch axNN heatAddedIntegrated’
channel height chCN axNN height
channel pressure chCN axNN pressure
channel liquid velocity chCN axNN velocityLiquid
channel vapor velocity chCN axNN velocityVapor
channel entrainment rate (velocity) chCN axNN velocityEntrain
channel void fraction (liquid) chCN axNN voidFractionLiquid
channel void fraction (vapor) chCN axNN voidFractionVapor
channel volume fraction of entrainment liquid chCN axNN volumeEntrainFraction
channel mass flow rate (liquid) chCN axNN massFlowRateLiquid
channel mass flow rate (vapor) chCN axNN massFlowRateVapor
channel entrainment rate (mass flow rate) chCN axNN massFlowRateEntrain
channel flow regime ID chCN axNN flowRegimeID
channel heat added to liquid chCN axNN heatAddedToLiquid
channel heat added to vapor chCN axNN heatAddedToVapor
channel evaporation rate chCN axNN evaporationRate
channel enthalpy of vapor chCN axNN enthalpyVapor
channel enthalpy of saturated vapor chCN axNN enthalpySaturatedVapor
channel enthalpy difference between vapor and saturated vapor chCN axNN enthalpyVapor-SaturatedVapor
channel enthalpy of liquid chCN axNN enthalpyLiquid
channel enthalpy of saturated liquid chCN axNN enthalpySaturatedLiquid
channel enthalpy difference between liquid and saturated liquid chCN axNN enthalpyLiquid-SaturatedLiquid
channel enthalpy of mixture chCN axNN enthalpyMixture
channel density of liquid chCN axNN densityLiquid
channel density of vapor chCN axNN densityVapor
channel density of mixture chCN axNN densityMixture

600



Output Variable Name in CSV file
channel net entrainment rate
(difference between entrainment rate and de-entrainment rate) chCN axNN netEntrainRate
channel enthalpy of the mixture of non-condensable gases chCN axNN enthalpyNonCondensableMixture
channel density of the mixture of non-condensable gases chCN axNN densityNonCondensableMixture
channel steam volume fraction [0-100] chCN axNN volumeFractionSteam
channel air volume fraction [0-100] chCN axNN volumeFractionAir
channel total equivalent diameter of the liquid droplets
(all droplets as a single big one) (diam-ld) chCN axNN equiDiameterLiquidDroplet
channel averaged diameter of liquid droplets field (diam-sd) chCN axNN avgDiameterLiquidDroplet
channel averaged flow rate of liquid droplets field (flow-sd) chCN axNN avgFlowRateLiquidDroplet
channel averaged velocity of liquid droplets field (veloc-sd) chCN axNN avgVelocityLiquidDroplet
channel evaporation rate of liquid droplets field (gamsd) chCN axNN evaporationRateLiquidDroplet
fuel rod height fuelRodRN surfaceSN axNN height
fuel rod fluid temperatures (liquid) fuelRodRN surfaceSN axNN fluidTemperatureLiquid
fuel rod fluid temperatures (vapor) fuelRodRN surfaceSN axNN fluidTemperatureVapor
fuel rod surface heat flux fuelRodRN surfaceSN axNN surfaceHeatflux
clad outer surface temperature fuelRodRN surfaceSN axNN cladOutTemperature
clad iRNer surface temperature fuelRodRN surfaceSN axNN cladInTemperature
gap conductance fuelRodRN surfaceSN axNN gapConductance
fuel outer suface temperature fuelRodRN surfaceSN axNN fuelTemperatureSurface
fuel center temperature fuelRodRN surfaceSN axNN fuelTemperatureCenter
cylindrical tube height cylRodRN surfaceSN axNN height
cylindrical tube outside surface heat flux cylRodRN surfaceSN axNN outsideSurfaceHeatFlux
cylindrical tube outside surface wall temperature cylRodRN surfaceSN axNN outsideSurfaceWallTemperature
cylindrical tube outside surface vapor temperature cylRodRN surfaceSN axNN outsideSurfaceVaporTemperature
cylindrical tube outside surface liquid temperature cylRodRN surfaceSN axNN outsideSurfaceLiquidTemperature
cylindrical tube inside surface wall temperature cylRodRN surfaceSN axNN insideSurfaceWallTemperature
cylindrical tube inside surface vapor temperature cylRodRN surfaceSN axNN insideSurfaceVaporTemperature
cylindrical tube inside surface liquid temperature cylRodRN surfaceSN axNN insideSurfaceLiquidTemperature
cylindrical tube inside surface heat flux cylRodRN surfaceSN axNN insideSurfaceHeatFlux
heat slab (tube) height heatSlabHN axNN height
heat slab (tube) outside surface heat flux heatSlabHN axNN outsideSurfaceHeatFlux
heat slab (tube) outside surface wall temperature heatSlabHN axNN outsideSurfaceWallTemperature
heat slab (tube) outside surface vapor temperature heatSlabHN axNN outsideSurfaceVaporTemperature
heat slab (tube) outside surface liquid temperature heatSlabHN axNN outsideSurfaceLiquidTemperature
heat slab (tube) inside surface wall temperature heatSlabHN axNN insideSurfaceWallTemperature
heat slab (tube) inside surface vapor temperature heatSlabHN axNN insideSurfaceVaporTemperature
heat slab (tube) inside surface liquid temperature heatSlabHN axNN insideSurfaceLiquidTemperature
heat slab (tube) inside surface heat flux heatSlabHN axNN insideSurfaceHeatFlux

Note: RAVEN, regonizes failed or crashed CTF runs and no data will be saved from those.

19.15.6 Distributions

The <Distribution> block defines the distributions that are going to be used for the sampling
of the variables defined in the <Samplers> block. For all the possibile distributions and all their
possible inputs please see the chapter about Distributions (see 9). Here we report an example of a
Normal distribution:

<Distributions verbosity='debug'>
<Normal name="GridLossCoeff">

<mean>0.7</mean>
<sigma>0.1</sigma>
<upperBound>0.9</upperBound>
<lowerBound>0.6</lowerBound>

</Normal>
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<Uniform name="DB1dist">
<upperBound>0.026</upperBound>
<lowerBound>0.020</lowerBound>

</Uniform>
<Uniform name="DB2dist">

<upperBound>0.9</upperBound>
<lowerBound>0.7</lowerBound>

</Uniform>
<Uniform name="DB3dist">

<upperBound>0.5</upperBound>
<lowerBound>0.3</lowerBound>

</Uniform>
</Distributions>

It is good practice to name the distribution something similar to what kind of variable is going to
be sampled, since there might be many variables with the same kind of distributions but different
input parameters.

19.15.7 Samplers

In the <Samplers> block we want to define the variables that are going to be sampled.
The perturbation or optimization of the input of any CTF sequence is performed using the ap-
proach detailed in the Generic Interface section (see 19.1). Briefly, this approach uses “wild-cards”
(placed in the original input files) for injecting the perturbed values. For example, if the original
input file (that needs to be perturbed) is the following:
Example: We want to do the sampling of 1 single variable:

• The Grid Loss Coefficient Data is used from sampled values.

We are going to sample this variable using two different sampling methods: Grid and MonteCarlo.
The RAVEN input is then written as follows:

<Samplers verbosity='debug'>
<Grid name='Grid_Sampler' >

<variable name='GrdLss'>
<distribution>GridLossCoeff</distribution>
<grid type='CDF' construction='equal' steps='10'>0.001

↪→ 0.999</grid>
</variable>

</Grid>
<MonteCarlo name='MC_Sampler'>

<samplerInit>
<limit>1000</limit>

</samplerInit>
<variable name='GrdLss'>
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<distribution>GridLossCoeff</distribution>
</variable>
<variable name='DB1'>

<distribution>DB1dist</distribution>
</variable>
<variable name='DB2'>

<distribution>DB2dist</distribution>
</variable>
<variable name='DB3'>

<distribution>DB3dist</distribution>
</variable>

</MonteCarlo>
</Samplers>

CTF input file should be modified with wild-cards in the following way.
***********************************************************************************************
*GROUP 7 − Grid Loss C o e f f i c i e n t Data *
***********************************************************************************************
**NGR

7
* Card 7 . 1
** NCD NGT IFGQF IFSDRP IFESPV IFTPE IGTEMP NFBS NDM9 NDM10 NDM11 NDM12 NDM13 NDM14

21 0 0 0 0 0 0 0 0 0 0 0 0 0
* Card 7 . 2
** CDL J CD1 CD2 CD3 CD4 CD5 CD6 CD7 CD8 CD9 CD10 CD11 CD12
$RAVEN−GrdLss$ 1 1 2 3 4 5 6 7 8 9 10 11 12

0 .90700 1 13 14 15 16 17 18 19 20 21 22 23 24
0 .90700 1 25 26 27 28 29 30 31 32 33 34 35 36

It is also possible to modify input values in parameter exposure input files.

Example: We want to do the sampling of 3 correlation parameters (Dittus-Boelter parameter mod-
ification, DB1 × ReDB2 × PrDB3):

• DB1, DB2, DB3 values will be sampled and vuq param.txt will be modified with sampled
values.

vuq param.txt and vuq mult.txt files are modified similarly with defined variable names.
k c h e n 1 = 0 . 2 4
k c h e n 2 = 0 . 7 5
k d b 1 = $RAVEN−DB1$
k d b 2 = $RAVEN−DB2$
k d b 3 = $RAVEN−DB3$
k d b 4 = 7 . 8 6
k wf 1 = 1 .691
k wf 2 = 0 . 4 3

It can be seen that each variable is connected with a proper distribution defined in the
<Distributions> block (from the previous example).

19.15.8 Steps

For a CTF interface, the <MultiRun> step type will most likely be used. But <SingleRun>
step can also be used for plotting and data extraction purposes. First, the step needs to be
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named: this name will be one of the names used in the <sequence> block. In our example,
Grid Sampler and MC Sampler.

<MultiRun name='Grid_Sampler' verbosity='debug'>

With this step, we need to import all the files needed for the simulation:

• CTF input files

<Input class="Files" type="ctf">CTFinput</Input>
<Input class="Files" type="vuq_param">vuq_param</Input>
<Input class="Files" type="vuq_mult" >vuq_mult</Input>

We then need to define which model will be used:

<Model class='Models' type='Code'>MyCobraTF</Model>

We then need to specify which Sampler is used, and this can be done as follows:

<Sampler class='Samplers' type='Grid'>Grid_Sampler</Sampler>

And lastly, we need to specify what kind of output the user wants. For example the user might want
to make a database (in RAVEN the database created is an HDF5 file). Here is a classical example:

<Output class='Databases' type='HDF5'>Grid_out</Output>

Following is the example of two MultiRun steps which use different sampling methods (Grid and
Monte Carlo), and creating two different databases for each one:

<Steps verbosity='debug'>
<MultiRun name='Grid_Sampler' verbosity='debug'>

<Input class='Files' type="ctf">CTFinput</Input>
<Input class="Files" type="vuq_param">vuq_param</Input>
<Input class="Files" type="vuq_mult" >vuq_mult</Input>
<Model class='Models' type='Code'>MyCobraTF</Model>
<Sampler class='Samplers' type='Grid'>Grid_Sampler</Sampler>
<Output class='Databases' type='HDF5'>Grid_out</Output>
<Output class='DataObjects' type='PointSet'

↪→ >GridCTFPointSet</Output>
<Output class='DataObjects'

↪→ type='HistorySet'>GridCTFHistorySet</Output>
</MultiRun>
<MultiRun name='MC_Sampler' verbosity='debug'

↪→ re-seeding='210491'>
<Input class='Files' type=''>CTFinput</Input>
<Input class="Files" type="">vuq_param</Input>
<Input class="Files" type="" >vuq_mult</Input>
<Model class='Models' type='Code'>MyCobraTF</Model>
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<Sampler class='Samplers'
↪→ type='MonteCarlo'>MC_Sampler</Sampler>

<Output class='Databases' type='HDF5' >MC_out</Output>
<Output class='DataObjects' type='PointSet'

↪→ >MonteCarloCobraPointSet</Output>
<Output class='DataObjects'

↪→ type='HistorySet'>MonteCarloCobraHistorySet</Output>
</MultiRun>

</Steps>

19.16 SAPHIRE Interface
This section covers the input specification for running SAPHIRE through RAVEN. It is important
to notice that this short explanation assumes that the reader already knows how to use SAPHIRE.

19.16.1 Files

In the <Files> section, as specified before, all the files needed for the code to run should be
specified. In the case of SAPHIRE, the files typically needed are the following:

• SAPHIRE compressed project inputs with file extension ‘.zip’;

• SAPHIRE macro input file with file extension ‘.mac’.

Example:

<Files>
<Input name="macro" type="">changeSet.mac</Input>
<Input name="saphireInput" type="">saphireInput.zip</Input>

</Files>

19.16.2 Models

In the <Models> block SAPHIRE executable needs to be specified. Here is a standard example
of what can be used:

<Models>
<Code name="saphire" subType="Saphire">

<executable>"C:\Saphire 8\tools\SAPHIRE.exe"</executable>
<clargs arg="macro" extension=".mac" type="input"

↪→ delimiter="="/>
<clargs arg="project" extension=".zip" type="input"

↪→ delimiter="="/>
<outputFile>fixed_output.csv</outputFile>
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<codeOutput type="uncertainty">et_uq.csv</codeOutput>
<codeOutput type="uncertainty">ft_uq.csv</codeOutput>

</Code>
</Models>

The <Code> XML node contains the information needed to execute the specific External Code.
This XML node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, specifies the code that needs to be associated to this
Model.

This model can be initialized with the following children:

• <executable>, string, required field, specifies the path of the executable to be used;
Note: Either an absolute or relative path can be used.

• <clargs>, string, required field, allows addition of command-line arguments to the exe-
cution command. This node is used to specify the input files that are required by SAPHIRE.
This node accepts the following attributes:

– type, require string attribute, specifies the type of command-line argument to add.
The current option is ’input’

– arg, string, required field specifies the flag to be used before the entry.

– extension, string, required field, specifies the type of file extension to use. This
links the <Input> file in the <Steps> to this location in the execution command.
Currently only accepts ‘.zip’ and ‘.mac’.

– delimiter, string, required field, uses to link the arg and the <Input> with the
extension given by extension

Note: As shown in previous example, the following command will be generated:

"C:\Saphire 8\tools\SAPHIRE.exe" project=path/to/
↪→ saphireInput.zip macro=path/to/changeSet.mac

• <outputFile>, string, optional field, uses to specify the output file name (CSV only). In
this case, the code interface always produce a CSV file named “fixed output.csv”.

• <codeOutput>, string, required field, uses to specify output file generated by SAPHIRE
that will be processed via the code interface. The following attributes can be specified:

– type, required string attribute, the actual type of the provided file. The only type
accepted here is ’uncertainty’
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In this example, two output files “eq uq.csv” amd “ft uq.csv” will be processed by the SAPHIRE
code interface, and the results will be saved in output file with name “fixed output.csv”.

19.16.3 Distributions

The <Distributions> block defines the distributions that are going to be used for the sampling
of the variables defined in the <Samplers> block. For all the possible distributions and all their
possible inputs, please see the chapter about Distributions (see 9). Here we give a general example:

<Distributions>
<Normal name="allEvents">

<mean>0.1</mean>
<sigma>0.025</sigma>
<lowerBound>0.05</lowerBound>
<upperBound>0.15</upperBound>

</Normal>
<Normal name="mov1Event">

<mean>0.5</mean>
<sigma>0.1</sigma>
<lowerBound>0.3</lowerBound>
<upperBound>0.8</upperBound>

</Normal>
<Normal name="single1">

<mean>0.2</mean>
<sigma>0.05</sigma>
<lowerBound>0.1</lowerBound>
<upperBound>0.3</upperBound>

</Normal>
</Distributions>

It is good practice to name the distribution similar to what kind of variable is going to be sampled.

19.16.4 Samplers

In the <Samplers> block we want to define the variables that are going to be sampled. The
perturbation of the input of SAPHIRE MACRO is performed using the approach detailed in the
Generic Interface section (see 19.1). This approach uses the “wild-cards” (placed in the original
input files) for injecting the perturbed values. For example, if one wants to perturb the event tree
probabilities of the original input file, i.e.

<change set>
<unmark></unmark>
<delete>

<name>ALL-EVENTS</name>
</delete>
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<add>
<name>ALL-EVENTS</name>
<description>Class change all events Change Set</description>
<class>

<event name>*</event name>
<suscept>1</suscept>
<probability>1.E-2</probability>

</class>
</add>
<mark name>ALL-EVENTS</mark name>
<generate></generate>

</change set>
...
<change set>

<unmark></unmark>
<delete>

<name>MOV-1-EVENTS</name>
</delete>
<add>

<name>MOV-1-EVENTS</name>
<description>Class change subset events Change

↪→ Set</description>
<class>

<event name>?-MOV-CC-1</event name>
<calc type>1</calc type>
<probability>5E-3</probability>

</class>
</add>

<mark name>MOV-1-EVENTS</mark name>
<generate></generate>

</change set>
...

<change set>
<unmark></unmark>
<delete>

<name>SINGLE-1</name>
</delete>
<add>

<name>SINGLE-1</name>
<description>Single Event Change Set</description>
<single>
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<event name>E-MOV-CC-A</event name>
<calc type>1</calc type>
<probability>4E-1</probability>

</single>
</add>
<mark name>SINGLE-1</mark name>
<generate></generate>

</change set>

One need to use the RAVEN “wild-cards“ to inject the perturbed values, i.e.

<change set>
<unmark></unmark>
<delete>

<name>ALL-EVENTS</name>
</delete>
<add>

<name>ALL-EVENTS</name>
<description>Class change all events Change Set</description>
<class>

<event name>*</event name>
<suscept>1</suscept>
<probability>$RAVEN-allEventsPb$</probability>

</class>
</add>
<mark name>ALL-EVENTS</mark name>
<generate></generate>

</change set>
...
<change set>

<unmark></unmark>
<delete>

<name>MOV-1-EVENTS</name>
</delete>
<add>

<name>MOV-1-EVENTS</name>
<description>Class change subset events Change

↪→ Set</description>
<class>

<event name>?-MOV-CC-1</event name>
<calc type>1</calc type>
<probability>$RAVEN-mov1EventPb$</probability>

</class>
</add>
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<mark name>MOV-1-EVENTS</mark name>
<generate></generate>

</change set>
...

<change set>
<unmark></unmark>
<delete>

<name>SINGLE-1</name>
</delete>
<add>

<name>SINGLE-1</name>
<description>Single Event Change Set</description>
<single>

<event name>E-MOV-CC-A</event name>
<calc type>1</calc type>
<probability>$RAVEN-single1Pb$</probability>

</single>
</add>
<mark name>SINGLE-1</mark name>
<generate></generate>

</change set>

The RAVEN <Samplers> input will be
Example:

<Samplers>
<MonteCarlo name="mcSaphire">

<samplerInit>
<limit>2</limit>

</samplerInit>
<variable name="allEventsPb">

<distribution>allEvents</distribution>
</variable>
<variable name="mov1EventPb">

<distribution>mov1Event</distribution>
</variable>
<variable name="single1Pb">

<distribution>single1</distribution>
</variable>

</MonteCarlo>
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19.16.5 Steps

In this section, the <MultiRun> will be used. As shown in the following, two SAPHIRE input
files listed in <Files> are linked here using <Input>, the <Model> and <Sampler> de-
fined in previous sections will be used in this <MultiRun>. The outputs will be saved in the
DataObject “saphireDump”, and will be printed via OutStreams.

<Steps>
<MultiRun name="sample">

<Input class="Files" type="">macro</Input>
<Input class="Files" type="">saphireInput</Input>
<Model class="Models" type="Code">saphire</Model>
<Sampler class="Samplers"

↪→ type="MonteCarlo">mcSaphire</Sampler>
<Output class="DataObjects"

↪→ type="PointSet">saphireDump</Output>
<Output class="OutStreams"

↪→ type="Print">saphirePrint</Output>
</MultiRun>

</Steps>

19.17 PHISICS Interface

19.17.1 General Information

This section covers the input specification for running PHISICS through RAVEN. The interface
can be used to perturb the PHISICS input files including the INSTANT and MRTAU input decks
and the following libraries: cross sections, fission yield, decay, fission Q-values, decay Q-values
and the XML material input. The interface also the cabablity to work in MRTAU standlone
calculations, in INSTANT/MRTAU mode (PHISICS) and in PHISICS/RELAP5 coupled mode
(see 19.18).

19.17.2 Files

<Files> includes two attributes name and type entries, identically as other interfaces. It also
includes two optional attributes perturbable and subDirectory.
The name attribute is a user-defined internal name for the file contained in the node. Default:
None (required entry).
The type attribute identifies which base-level parser an input file is used within. The type has to
be specified as long as the file is parsed by the interface or an interface’s parser. type is hardcoded
for this speciific inputs, in order to assign each input to its corresponding RAVEN parser. Default:
None (required entry if parsed).
The corresponding hardcoded flags accepted by RAVEN are given in Table 26. The type attributes
are case-incensitive.
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Table 26: Correspondance between the type attributes required and the PHISICS input files
Type Attribute Corresponding PHISICS input Perturbable
decay MrTau decay library Yes
inp XML Instant input No
path XML MrTau path-to-libraries file No
material XML MrTau material input Yes
depletion input XML MrTau depletion input No
Xs-Library XML MrTau library input No
FissionYield MrTau fission yield library Yes
FissQValue MrTau fission Q-values Yes
AlphaDecay MrTau α decay library Yes
Beta+Decay MrTau β+ decay library Yes
Beta+xDecay MrTau β+∗ decay library Yes
BetaDecay MrTau β decay library Yes
BetaxDecay MrTau β∗ decay library Yes
IntTraDecay MrTau internal transition decay library Yes
XS XML XS scaling factors file Yes
N,2N MrTau n,2n library No
N,ALPHA MrTau n,α library No
N,G MrTau n,γ library No
N,Gx MrTau n,γ∗ library No
N,P MrTau n,proton library No
budep MrTau burn-up history No
CRAM coeff PF MrTau CRAM coefficients No
IsotopeList MrTau isotope list input No
mass MrTau mass input No
tabMap XML tabulation mapping No

612



The cross section libraries files can be defined with any type attribute. The tabulation mapping file
is optional. If a type=’tabMap’ is found in an <Input> node, the cross section parser will be
based on the tabulation points provided in the tabulation mapping file. If no tabulation mapping file
is provided, the cross section parser will print the perturbed cross section in one single tabulation
point. The perturbable attribute indicates whether the input file can be perturbed. It is an
optional boolean attribute. Default: False
The subDirectory indicates the subdirectory to which RAVEN search an input file. It is an
optional attribute. Default: . / (relative path of the working directory)
The ’Input File’ string is the user-defined input file name. The XML file specifying the li-
brary input paths corresponding to the decay, fission yields, the Q-values and the Mrtau standalone
inputs will be automatically populated according to the user-input file names. The Instant-MrTau
input files material, library, instant control, library path and depletion are also user-defined in the
input section. The user does not have to use the default file names. Example:

<File>
<Input name="path" type="path" perturbable="False"

↪→ >pathMrTau.xml</Input>
<Input name="dec" type="decay" perturbable="True"

↪→ subDirectory="libF" >decayLibrary.dat</Input>
<Input name="input" type="inp" perturbable="False"

↪→ >inpInstant.xml</Input>
</File>

in the example, the path-to-MrTau-libraries is pointed by the type=”path”. The file name associ-
ated to the path-to-MrTau-libraries file is then user-defined as ’pathMrTau.xml’. It is located
in the working directory and it cannot be perturbed.
The decay library is pointed by the type=”decay”. The file name associated to the decay library
is then user-defined as ’decayLibrary.dat’. The decay library is located at the relative path
”libF”. This path and name will be populated in the ’pathMrTau.xml’ file automatically. The
decay library can be perturbed.
The Instant XML input is pointed by the type=”inp”. The file name associated to the Instant
input is then user-defined as ’inpInstant.xml’. it is located in the working directory and it
cannot be perturbed.

19.17.3 Models

The user provides paths to executables for sampled variables within the <Models> block.
The <Code> block will contain attributes name and subType. The name identifies that partic-
ular <Code> model within RAVEN, and subType specifies which code interface the model will
use.
The <executable> block contains the absolute or relative path (with respect to the current
working directory) to PHISICS that RAVEN will use to run generated input files.
The <mrtauStandAlone> node informs whether or not MrTau is ran in standalone mode. The
<mrtauStandAlone> accepts only a boolean entry (’true’, ’t’, ’false’ ,’f’). It is
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case insensitive. Default: false. If <mrtauStandAlone> is false, a coupled INSTANT+MrTau
calculation is ran, using the Phisics executable.
The <printSpatialRR> node indicates if the spatial reaction rates computed by PHISICS are
to be included in the RAVEN csv output. The entry is case insensitive. . If False, the total reaction
rates are printed instead. Default: False (spatial reaction rate not printed).
The <printSpatialFlux> node indicates if the spatial neutron fluxes computed by PHISICS
are to be included in the RAVEN csv output. The entry is case insensitive. Default: False (spatial
fluxes not printed).
An example of the <Models> block is given below:

<Models>
<Code name="PHISICS" subType="Phisics">

<executable>./path/to/instant/executable</executable>
<mrtauStandAlone>F</mrtauStandAlone>
<printSpatialRR>F</printSpatialRR>
<printSpatialFlux>T</printSpatialFlux>

</Code>
</Models>

In the example, note that because <mrtauStandAlone> is false. If <mrtauStandAlone>
is changed to ’true’, the path ’/path/to/mrtau/executable’ will be read to get the
MrTau executable. In the example, RAVEN is used in PHISICS standalone mode. Spatial neutron
fluxes are printed a and no spatial reaction rates are printed in the RAVEN output.

19.17.4 Distributions

The <Distributions> block defines all distributions used to sample variables in the current
RAVEN run.
For all the possible distributions and their possible inputs please refer to the Distributions chapter
(see 9). It is good practice to name a distribution and its corresponding sampled variable with
identical root names, and appending sufix to the distribution name, since there might be many
variables with the same kind of distributions but different input parameters.

19.17.5 Samplers

The <Samplers> block defines the variables to be sampled. After defining a sampling scheme,
the variables to be sampled and their distributions are identified in the <variable> blocks. The
name must be formatted according to library which the variable belongs to. The description of the
’variable’ template is detailed in the next sub-sections for the decay constants (19.17.5.1), the
fission yields (19.17.5.2), the number densities (19.17.5.3), the fission Q-values (19.17.5.4), the
α decay Q-values (19.17.5.5), the β+ Q-values (19.17.5.6), β+∗ Q-values (19.17.5.7), β Q-values
(19.17.5.8), β∗ Q-values (19.17.5.9), the internal transition decay Q-values (19.17.5.10) and the
cross section scaling factors (19.17.5.11).
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19.17.5.1 Decay constant variable

The ’variable’ template is: DECAY|TYPE OF DECAY|ISOTOPE. The type of decay
(TYPE OF DECAY) is the decay mode relative to the isotope’s decay constant perturbed. The
type of decay depends on the isotope perturbed. If the isotope is an actinide, the available decay
modes are:

− BETA;

− BETA+;

− ALPHA.

If the isotope is a fission product, the available decay modes are:

− BETA;

− BETA*;

− BETA+;

− BETA+*;

− ALPHA;

− INTER TRAN.

The decay types are immediately parsed from the MRTAU decay library. Hence, If the user modi-
fies the decay labels in the decay library, the user will have to modify the her/his decay type in the
RAVEN input. The isotope defined in the variable has to originally exist in the decay library.

19.17.5.2 Fission yield variable

The ’variable’ template is FY|SPECTRUM|FISSION ISOTOPE|FISSION PRODUCT.
The types of spectrum (SPECTRUM) available are: FAST; THERMAL. The fission isotopes (FIS-
SION ISOTOPE) and fission products (FISSION PRODUCT) in the variable have to originally
exist in the fission yield library.

19.17.5.3 Number density variable

The ’variable’ template is DENSITY|MATERIAL ID|ISOTOPE. The Material ID (MATE-
RIAL ID) has to originally exist in the material XML input. The isotope in the variable has to be
originally defined within the material ID aforementioned.

19.17.5.4 Fission Q-values variables

The ’variable’ template is QVALUES| ISOTOPE.
The isotope (ISOTOPE) in the variable has to originally exist in the fission Q-values library.
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19.17.5.5 α decay variable

The ’variable’ template is ALPHADECAY|ISOTOPE.
The isotope (ISOTOPE) in the variable has to originally exist in the α decay Q-values library.

19.17.5.6 β+ decay variable

The ’variable’ template is BETA+DECAY| ISOTOPE.
The isotope (ISOTOPE) in the variable has to originally exist in the β+ decay Q-values library.

19.17.5.7 β+∗ decay variable

The ’variable’ template is BETA+XDECAY|ISOTOPE.
The isotope (ISOTOPE) in the variable has to originally exist in the β+∗ decay Q-values library.

19.17.5.8 β decay variable

The ’variable’ template is BETADECAY|ISOTOPE.
The isotope (ISOTOPE) in the variable has to originally exist in the β decay Q-values library.

19.17.5.9 β∗ decay variable

The ’variable’ template is BETAXDECAY|ISOTOPE.
The isotope (ISOTOPE) in the variable has to originally exist in the β∗ decay Q-values library.

19.17.5.10 Internal transition decay variable

The ’variable’ template is INTTRADECAY|ISOTOPE.
The isotope (ISOTOPE) in the variable has originally to exist in the internal transition decay Q-
value library.

19.17.5.11 Cross section scaling factors

The ’variable’ template is:
XS|TABULATION POINT|MATERIAL ID|ISOTOPE|OPERATOR|XS TYPE|GROUP NUMBER.

· The tabulation point (TABULATION POINT) is the integer referrencing to the tabulation
point. The tabulation numbering is given by the XML input file ’tabMapping.xml’ (Section
??). If there are no tabulations, the tabulation number has to be 1.

· The material ID (MATERIAL ID) is the string referring to the material in which the isotope
is defined. The Material ID has to originally exist in the material XML file.

· The isotope (ISOTOPE) is the ISOTOPE that the user desires to perturbed. The isotope
perturbed has to originally exist in the material ID.
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· The operator (OPERATOR) determines how the cross section is perturbed from its nominal
value. The operators available are:

− ADDITIVE; The additive operator adds the user-defined value to the nominal cross
section value.

− MULTIPLIER; the multiplier operator multiplies the user-defined factor to the nominal
value.

− ABSOLUTE; the absolute operator replaces the nominal value by the user-defined
value.

· The types of cross sections (CROSS SECTION TYPE) available are:

− FISSIONXS; Fission cross section.

− NPXS; Neutron to proton capture cross section.

− NGXS; Neutron to gamma capture cross section.

− NUFISSIONXS; ν*fission cross section. The ν*fission is coordinated with the fission
cross section so that only the coefficient ν is perturbed.

− SCATTERINGXS. Total scattering cross section.

− N2NXS. n,2n cross section.

− NALPHAXS. Neutron to alpha capture cross section.

− KAPPAXS. Kappa coefficient.

1. The group number (GROUP NUMBER) is the group number of the cross section perturbed.
The group number is an integer and has to be inferior or equal to the number of groups used
in the cross section library.

An example is given for each type of variable in Table 27.
The following example is a Monte Carlo-based sampler with two variables. The β decay constant
of uranium 235U and the 135Xe n,p cross section in group 12 at tabulation point 1 within the material
ID ”F1” are to be perturbed. The absolute operator is chosen for the n,p cross section, which means
the nominal value will be replaced by the averaged value defined in the distribution block, with its
corresponding distribution.

<Samplers>
<MonteCarlo name="MC_samp">

<samplerInit>
<limit>100</limit>

</samplerInit>
<variable name="DECAY|BETA|U235">
<distribution>DECAY|BETA|U235_dis</distribution>

</variable>
<variable name="XS|1|FUEL1|XE135|ABSOLUTE|NPXS|12">
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Table 27: Examples of possible variable names
Input file perturbed Variable perturbed Example
Decay lib. Decay constant DECAY|BETAX|SE78
Fission yield lib. Fission yield FY|FAST|U235|NB93
XML Material Number densitiy DENSITY|FUEL1|PU239
Fission Q-values lib. Fission Q-value QVALUES|U235
α decay lib. α decay Q-value ALPHADECAY|U234
β+ decay lib. β+ decay Q-value BETA+DECAY|U235
β+∗ decay lib. β+∗ decay Q-value BETA+XDECAY|U236
β decay lib. β decay Q-value BETADECAY|CM242
β∗ decay lib. β∗ decay Q-value BETAXDECAY|PU240
Internal transition lib. Internal transition Q-value INTTRADECAY|U238
XS scaling factors XS scaling factor XS|1|FUEL1|U238|ABSOLUTE|N2NXS|4

<distribution>XS|1|FUEL1|XE135|ABSOLUTE|NPXS|12_dis
↪→ </distribution>

</variable>
</MonteCarlo>

</Samplers>

19.17.6 Steps

For a PHISICS interface, the <MultiRun> step type will most likely be used. First, the step
needs to be named: this name will be one of the names used in the <Sequence> block. In the
example, the step is called ’testDummyStep’.

<Steps>
<MultiRun name='testDummyStep' verbosity='debug'>

<Input class='Files' type='decay'>decay.dat</Input>
<Input class='Files' type='inp'>inp.xml</Input>
<Input class='Files' type='XS'>xs.xml</Input>
<Model class='Models' type='Code'>PHISICS</Model>
<Sampler class='Samplers' type='MonteCarlo'>MC_samp</Sampler>
<Output class='Databases' type='HDF5'>DataB_REL5_1</Ouput>

</MultiRun>
</Steps>

19.17.7 Additional Input

In addition to the usual PHISICS inputs required (INSTANT input, depletion input, material in-
put, library input, path input) and the regular MrTau libraries, additional inputs may be required,
depending on the user’s needs.
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· A file ’tabMapping.xml’ is (optional) maps the cross section tabulation points for interpola-
tion purposes. The tabulation mapping assigns an integer to a given tabulation in order to
identify it in the RAVEN variable definition. The format of the tabulation mapping is the
following:

<mapping>
<tabulation set="1">

<tab name="mod_temperature">559.0</tab>
<tab name="BURN-UP">0.0</tab>

</tabulation>
<tabulation set="2">

<tab name="mod_temperature">1000</tab>
<tab name="BURN-UP">0.0</tab>

</tabulation>
<tabulation set="3">

<tab name="mod_temperature">1000</tab>
<tab name="BURN-UP">100</tab>

</tabulation>
</mapping>

In <tabulation>, the set refers to the user-defined number assigned to a given tabula-
tion point. This set number corresponds to the second argument of the cross section scaling
factor variable. The user enters the tabulation parameters and corresponding tabulation val-
ues with the <tabulation>, using the sub-node <tab>.

· If the user perturbs cross sections, an XML file ’scaled xs.xml’ will be generated at each
perturbation in the output folder. The file ’scaled xs.xml’ is automatically created from the
cross section variables defined in the RAVEN <Sampler> block (see 19.17.5.11). The
cross section file ’scaled xs.xml’ has the following format:

<scaling_library>
<tabulation>

<tab name="mod_temperature">559.0</tab>
<tab name="BURN-UP">0.0</tab>
<library lib_name="fuel1" >

<isotope id="xe135" type="absolute">
<npxs g="8,3,12">8.889E+02,3.333E+02,1.212E+05</npxs>

</isotope>
<isotope id="u235" type="multiplier">
<fissionxs g="1">2.019E-02</fissionxs>

</isotope>
</library>

</tabulation>
<scaling_library>
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The tabulation points <tab> are optional have to agree with the tabulation points defined
in the “tabMapping.xml” if they are provided. The <library> has one required attribute
lib name corresponding to one of the libraries listed in the PHISICS library input. The
<isotope> provides the information related to an isotope included in the library afore-
mentioned. The id gives the isotope ID (no dash allowed). The type specifies the type of
operator used (’additive’, ’multiplier’ or ’absolute’). The sub-node <XS>
(where ’XS’ is the perturb-able type of cross sections listed in section 19.17.5.11) provides
the cross section information. The g attribute refers to the group numbers to be perturbed,
separated by commas. The ’XS’ provides the scaling factors or the new cross section values.

19.17.8 Output Files Conversion

The PHISICS output available for RAVEN post-processing are described in this section. The
PHISICS outputs are by convention separated by ’|’ if they are contained in a matrix form such
as group-wise or region-wise values. In the PHISICS mode (i.e. <mrtauStandalone> is
’False’) The variables available for RAVEN post-processing are:

− the MrTau time;

− the multiplication factor;

− the multiplication factor error;

− the spatial reaction rates (only if <printSpatialRR> is ’True’);

− the spatial power (only if <printSpatialRR> is ’True’);

− the spatial fluxes by region (only if <printSpatialRR> is ’True’);

− the neutron fluxes by cell (only if <printSpatialFlux> is ’True’);

− the neutron fluxes by material (only if <printSpatialFlux> is ’True’);

− the total reaction rates (only if <printSpatialRR> is ’False’);

− the decay heat (only if decay heat flag is on in the PHISICS input);

− the burnup;

− the cross section values (only for perturbed cross sections);

− the PHISICS cpu time.

In the MrTau standalone mode (i.e <mrtauStandalone> is ’True’) The variables available
for RAVEN post-processing are:

− the MRTAU time;
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Table 28: template of the RAVEN output variables
Variable Variable template Comment
MrTau Time timeMrTau
Multiplication Factor keff
Multiplication Factor Error errorKeff
n2n Reaction Rate n2n|gr7|reg4 only if <printSpatialRR> is ’True’)
Power power|gr7|reg4 only if <printSpatialRR> is ’True’)
Absorption Reaction Rate absorption|gr7|reg4 only if <printSpatialRR> is ’True’)
Fission Reaction Rate fission|gr7|reg4 only if <printSpatialRR> is ’True’)
Neutron Flux flux|gr7|reg4 only if <printSpatialRR> is ’True’)
ν Fission Reaction Rate neutron|gr7|reg4 only if <printSpatialRR> is ’True’)
Neutron Flux by Cell flux|cell2|gr7 only if <printSpatialFlux> is ’True’)
Neutron Flux by Material flux|mat3|gr4 only if <printSpatialFlux> is ’True’)
Total n2n Reaction Rate n2n|Total only if <printSpatialRR> is ’False’)
Total Power reaction Rate power|Total only if <printSpatialRR> is ’False’)
Total Absorption Reaction Rate absorption|Total only if <printSpatialRR> is ’False’)
Total Fission Reaction Rate fission|Total only if <printSpatialRR> is ’False’)
Total Neutron Flux flux|Total only if <printSpatialRR> is ’False’)
Total ν Fis. Reaction Rate neutron|Total only if <printSpatialRR> is ’False’)
Decay Heat decay|Fuel1|gr4 only if the decay heat flag is turned on in PHISICS
Cross sections fuel1|xe135|npxs|8 only if cross sections are perturbed
PHISIC CPU time cpuTime

− the isotope number densities;

− the decay heat.

The variable template is provided in Table 28. In the table, the region number is taken equal to 4,
the group number is taken equal to 7, the cell number equal to 2 and the material number equal to
3. Those values are only examples and can be adapted to the user’s convenience.
ν is the average number of neutrons generated after fission. Note that the material number in the
neutron flux by material corresponds to the material ID number in the PHISICS csv output, while
the material string ID in the decay heat corresponds to the material name given by the user in the
xml material file. Hence, the neutron flux by material will always have the format matX, where X
is an integer. The decay heat material is user-defined in the xml material file via the attribute id of
the <mat> node.

19.18 PHISICS/RELAP5 Interface

19.18.1 General Information

This section covers the input specification for running PHISICS/RELAP5 through RAVEN. This
interface can be used to perturb the PHISICS and/or RELAP5 input files. This interface is strongly

621



Table 29: Example of RELAP5 type attributes in coupled PHISICS/RELAP5 mode
Type Attribute Corresponding RELAP5 input Perturbable
relapFluid fluid properties No
relapInp Relap input File yes
relapLicense license for the RELAP5 executable No

built around the PHISICS and RELAP5 standalone interfaces, hence this sections covers the ad-
ditional cautions to take care of to run the coupled PHISICS/RELAP5 code. The user will find
additional information regarding PHISICS in section 19.17 or RELAP5 in section 19.3.

19.18.2 Files

<Files> includes two attributes name and type entries, identically as other interfaces. It also
includes two optional attributes perturbable and subDirectory.
The name attribute is a user-defined internal name for the file contained in the node. Default:
None (required entry).
For the files parsed by the PHISICS interface or the PHISICS interface’s parsers, some of the type
attributes are hardcoded. The accepted PHISICS type attributes are given in Table 26 and are not
repeated here. Additional information can be found in section 19.17.2. All the necessary RELAP5
input files need to have a type attribute starting with the string ’relap’. The necessary RELAP5
files for use in the coupled PHISICS/RELAP mode within RAVEN are given in Table 29. The files
associated with a type that does not start with the string ’relap’ will be treated by the PHISICS
interface. The type attributes are case-incensitive.
Example of acceptable RELAP5 entries within PHISICS/RELAP5:

<File>
<Input name="H2O" type="relaph2o"

↪→ perturbable="False">tph2o</Input>
<Input name="H2" type="relaph2"

↪→ perturbable="False">tph2</Input>
<Input name="inputDeck" type="relapInput" perturbable="True"

↪→ >inp.i</Input>
<Input name="lic" type="relapLicence"

↪→ perturbable="False">license.bin</Input>
</File>

19.18.3 Models

The user has to provide the paths to executables for the sampled variables within the <Models>
block.
The <Code> block will contain attributes name and subType. The name identifies the particular
<Code> model within RAVEN, and subType specifies which code interface the model will use.
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subType=’PhisicsRelap5’ is the class name currently used for PHISICS/RELAP5 coupled
calculations.
The <executable> block contains the absolute or relative path (with respect to the current
working directory) to PHISICS/RELAP5 that RAVEN will use to run the code. The additional
nodes in the <Models> applicable to PHISICS standalone and RELAP5 standalone are valid in
coupled mode and can be consulted in section 19.17.3 and section 19.3.5 respectively. Exception:
the use of MrTau in standalone mode (i.e. <mrtauStandAlone> set to ’True’) is not allowed
in PHISICS/RELAP5 coupled calculations.
An example of the <Models> block is given below:

<Models>
<Code name="PHISICS_RELAP5" subType="PhisicsRelap5">

<executable>./path/to/instant/executable</executable>
</Code>

</Models>

19.18.4 Distributions

The <Distributions> block defines all distributions used to sample variables in the current
RAVEN run.
For all the possible distributions and their possible inputs please refer to the Distributions chapter
(see 9).

19.18.5 Samplers

The <Samplers> block defines the variables to be sampled. After defining a sampling scheme,
the variables to be sampled and their distributions are identified in the <variable> blocks.
The name must be formatted according to the PHISICS library which the variable belongs to.
Information relative to PHISICS distributions are in section 19.17.5, as well as specifications on
PHISICS variable names. An example of a <Samplers> block is given below:

<Samplers>
<MonteCarlo name="MC_samp">

<samplerInit>
<limit>10</limit>

</samplerInit>
<variable name="DENSITY|FUEL1|U238">
<distribution>DENSITY|FUEL1|U238_distrib</distribution>

</variable>
<variable name="20100154:2">
<distribution>heat_capacity_154</distribution>

</variable>
</MonteCarlo>

</Samplers>
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In this example, the variable ’DENSITY|FUEL1|U238’ is relative to PHISICS and the variable
’20100154:2’ is relative to RELAP5.

19.18.6 Steps

The tasks performed by RAVEN need to be defined in the <Steps> block. Each task needs to be
defined with a name. This name is later on used in the the <Sequence> block. In the example,
the step is called ’testDummyStep’.

<Steps>
<MultiRun name='testDummyStep' verbosity='debug'>

<Input class='Files' type='decay'>decay.dat</Input>
<Input class='Files' type='inp'>inp.xml</Input>
<Input class='Files' type='XS'>xs.xml</Input>
<Input class="Files" type="relapFluid">tpfhe</Input>
<Input class="Files" type="relapExec">relap5Exec.x</Input>
<Model class="Models" type="Code">PHISICS_RELAP5</Model>
<Sampler class="Samplers" type="MonteCarlo">MC_samp</Sampler>
<Output class="Databases" type="HDF5">DataB_REL5_1</Output>
<Output class="DataObjects" type="PointSet">collset</Output>
</MultiRun>

</MultiRun>
</Steps>

19.18.7 Additional Input

The PHISICS additional inputs are described in section 19.17.7. The RELAP5 additional inputs
are described in section 19.3.5.

19.18.8 Output Files Conversion

The PHISICS output available for RAVEN post-processing are described in section 19.17.8. The
output printed from PHISICS and RELAP5 are synchronized in the RAVEN csv output. The
synchronization scheme is explained in this section.
At t = 0 seconds, the RELAP5 initialized output are printed in the csv output, while the output
variables from PHISICS are taken equal to 0. Then, the RAVEN/PHISICS/RELAP5 post-processor
finds the time step number at the end of each PHISICS burn step based on the <tab time step>
values, and prints the RELAP minor edits according to the <TH between BURN> values.
Let’s consider the following example:

− <tab time step> ’5 3 2’ </tab time step> (in the PHISICS depletion file);

− <TH between BURN> ’1.0 2.0’ <TH between BURN>() in the PHISICS input file);

624



− <tabulation boundaries> ’5.0 35.0 45.0’<tabulation boundaries>
(upper burn step boundaries in the PHISICS depletion file).

− in the RELAP5 input, a 3.0 seconds steady state is considered, with minor edits every 0.5
seconds.

The first PHISICS/RELAP5 output line printed will be at t = 0 seconds. The PHISICS outputs
are set to 0.0, the RELAP5 values are obtained at the end of the initialization. The second line
printed will be at the PHISICS time step ’5’ (end of the first burn step, corresponding to t = 5.0
seconds), and prints the RELAP5 minor edits as long as the time from the minor edits is lower than
the first <TH between BURN> value ’1.0’. The RELAP5 minor edits are printed along with
the PHISICS burn step ’5’ as long as time in the minor edits is smaller or equal to ’1.0’. When
the RELAP5 time in the minor edits time is greater than ’1.0’, the end of the second PHISICS
burn step is targetted, from the <tab time step>: ’3’. This corresponds to a PHISICS time
equal to 35.0 seconds. The RELAP5 minor edits are printed along with the PHISICS values at t =
35.0 s, as long as the minor data time is smaller than the <TH between BURN> equal to ’2.0’.
Finally, the last PHISICS time step at 45.0 seconds is printed along with the RELAP5 minor edits.
Overall, the output variables printed will be:
mrtauTime, n2n|gr1|reg4, httemp 3001010 1, time
0.000, 0.000, 1.526, 0.000
5.000, 1.111, 1.859, 0.500
5.000, 1.111, 2.369, 1.000
35.00, 7.800, 3.666, 1.500
35.00, 7.800, 4.789, 2.000
45.00, 9.330, 4.225, 3.000

19.19 Neutrino Interface
This section covers the input specification for running Neutrino through RAVEN. It is important
to notice that this explanation assumes that the reader already knows how to use Neutrino. The
existing inteface can be used to modify the particle size. However, the interface can be modified to
alter other parameters by using a similar method to the existing particle size modification included
in the interface.

19.19.1 Files

In the <Files> section, as specified before, all the files needed for the code to run should be
specified. In the case of Neutrino, the file needed is the following:

• Neutrino input file with file extension ‘.nescene’;

The Neutrino input file name must be NeutrinoInput.nescene. Otherwise, the Neutrino interface
must be modified. Example:
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<Files>
<Input name="neutrinoInput"

↪→ type="">NeutrinoInput.nescene</Input>
</Files>

19.19.2 Models

In the <Models> block, the Neutrino executable needs to be specified. The entire path to the
Neutrino executable must be included. Here is a standard example of what can be used:

<Models>
<Code name="neutrinoCode" subType="Neutrino">

<executable>"C:\Program
↪→ Files\Neutrino_02_22_19\Neutrino.exe"</executable>

</Code>
</Models>

The <Code> XML node contains the information needed to execute the specific External Code.
This XML node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, specifies the code that needs to be associated to this
Model.

This model can be initialized with the following children:

• <executable>, string, required field, specifies the path of the executable to be used;
Note: Either an absolute or relative path can be used.

19.19.3 Distributions

The <Distributions> block defines the distributions that are going to be used for the sampling
of the variables defined in the <Samplers> block. For all the possible distributions and all their
possible inputs, please see the chapter about Distributions (see 9). Here is an example of a Uniform
distribution:

<Distributions>
<Uniform name="uni">

<lowerBound>0.1</lowerBound>
<upperBound>0.2</upperBound>

</Uniform>
</Distributions>
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19.19.4 Samplers

The <Samplers> block defines the variables to be sampled. After defining a sampling scheme,
the variables to be sampled and their distributions are identified in the <variable> blocks. The
name must be formatted according to the Neutrino parameter name, which for the particle size is
’ParticleSize’. An example of a <Samplers> block is given below:

<Samplers>
<MonteCarlo name="myMC">

<samplerInit>
<limit>5</limit>

</samplerInit>
<variable name='ParticleSize'>
<distribution>uni</distribution>

</variable>
</MonteCarlo>

</Samplers>

19.19.5 Steps

In this section, the <MultiRun> will be used. As shown in the following, a Neutrino input file is
listed in <Files> and is linked here using <Input>, the <Model> and <Sampler> defined in
previous sections will be used in this <MultiRun>. The outputs will be saved in the DataObject
’resultPointSet’.

<Steps>
<MultiRun name="run">

<Input class="Files" type="">neutrinoInput</Input>
<Model class="Models" type="Code">neutrinoCode</Model>
<Sampler class="Samplers" type="MonteCarlo">myMC</Sampler>
<Output class="DataObjects"

↪→ type="PointSet">resultPointSet</Output>
</MultiRun>

</Steps>

19.19.6 Output File Conversion

The Neutrino measurement field output is a CSV output. However, labels must be added to the
Neutrino output and it must be moved for RAVEN. These are both done in the Neutrino interface.
The labels that are added to the output file are ’time’ and ’result’. These labels would be used in
the <DataObjects> specification. If different labels are wanted, they would need to be changed
directly in the Neutrino interface.
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19.19.7 Additional Information

The Neutrino interface is used to alter the particle size by modifying the Neutrino input file. The
Neutrino interface searches for the default SPH solver parameter name: ’NIISphSolver 1’.
If the SPH solver name is changed in the Neutrino input file, the Neutrino interface must also
be changed. Similarly, the Neutrino interface searches for the output in the default Measurement
field name: ’MeasurementField 1’. Again, this would need to modified in the interface if the
measurement field name was changed.

19.20 Prescient Interface

19.20.1 General Information

The Prescient Interface is used to run the open source Prescient production cost modeling platform
available from https://github.com/grid-parity-exchange/Prescient
This allows inputs to be perturbed and data to be read out.

19.20.2 Sampler

For perturbing inputs, the sampled variable needs to be placed inside of $( )$ like $(var)$.
The sampled variable can have a constant added or a multiplication factor like $(var+3.2)$ or
$(var*2.1)$ or $(var*5.0+7.0)$ or $(a*-2.0)$ These can be placed in any of the .dat
or .csv files that are listed in the <Files> section as type="PrescientInput" An example
line could be: Abel 1 $(var)$

<Samplers>
<Grid name="grid">

<variable name="var">
<distribution>dist</distribution>
<grid construction="equal" steps="1" type="CDF">0.0

↪→ 1.0</grid>
</variable>

</Grid>
</Samplers>

19.20.3 Files

There are two types of inputs in the <Files> section. The
type="PrescientRunnerInput" ones are passed as an argument to the runner.py
If multiple PrescientRunnerInput files are specified then runner.py will be called mul-
tiple times (which can be used to run a populate and then simulate command). The
type="PrescientInput" are just used as additional inputs that have the data in them
perturbed.
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<Files>
<Input name="simulate" type="PrescientRunnerInput"
>simulate_day.txt</Input>

<Input name="structure" type="PrescientInput"
subDirectory="scenarios/pyspdir_twostage/2020-07-10/"
>ScenarioStructure.dat</Input>
<Input name="scenario_1" type="PrescientInput"
subDirectory="scenarios/pyspdir_twostage/2020-07-10/"
>Scenario_1.dat</Input>
<Input name="actuals" type="PrescientInput"
subDirectory="scenarios/pyspdir_twostage/2020-07-10/"
>Scenario_actuals.dat</Input>
<Input name="forcasts" type="PrescientInput"
subDirectory="scenarios/pyspdir_twostage/2020-07-10/"
>Scenario_forecasts.dat</Input>
<Input name="scenarios" type="PrescientInput"
subDirectory="scenarios/pyspdir_twostage/2020-07-10/"
>scenarios.csv</Input>

</Files>

19.20.4 Models

The <Code> model can be used with the subType="Prescient" to run the Prescient Code
Interface. The block currently does not have any option xml nodes.

<Models>
<Code name="TestPrescient" subType="Prescient">

<executable>
</executable>

</Code>
</Models>

19.20.5 Output Files Conversion

The code interface reads in the hourly summary.csv and the bus detail.csv files. It will
generate a Date Hour variable that can be used as the <pivotParameter> and is a string with
the date and hour. It also generates an Hour variable that is the hour as an integer. From the hourly
summary it will generate variables like TotalCosts and the other data that appears there. For each
of the busses in the bus detail file it generates variables like Clay LMP that can be used.
Exactly which variables will appear will vary depending on the Prescient input
files, but typical ones include TotalCosts, FixedCosts, VariableCosts,
LoadShedding, OverGeneration, ReserveShortfall, RenewablesUsed,
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RenewablesCurtailment, Demand, Price, and NetDemand. Variables that can be in-
cluded for a typical bus could include ones like Abel LMP, Abel LMP DA, Abel Shortfall,
and Abel Overgeneration.

<HistorySet name="samples">
<Input>var</Input>
<Output>Date_Hour, TotalCosts, FixedCosts, VariableCosts,

↪→ LoadShedding, OverGeneration, ReserveShortfall,
↪→ RenewablesUsed, RenewablesCurtailment, Demand,
↪→ Price, NetDemand, Abel_LMP, Clay_LMP </Output>

<options>
<pivotParameter>Date_Hour</pivotParameter>

</options>
</HistorySet>

19.20.6 Installation of Libraries

Installing Prescient so that RAVEN can run it requires that RAVEN and Prescient have a superset
of the libraries that they use so that both can run. One way to set this up is to install RAVEN,
and then source the conda load script and inside of the conda raven libraries environment do the
Prescient and Egret install. This is shown in the following listing:

#first clone raven, Egret and Prescient into a directory
git clone git@github.com:idaholab/raven.git
git clone git@github.com:grid-parity-exchange/Prescient.git
git clone git@github.com:grid-parity-exchange/Egret.git
#Switch to raven directory
cd raven
#install raven libraries
./scripts/establish_conda_env.sh --install
#switch to using raven libraries
source ./scripts/establish_conda_env.sh --load
#Switch to Prescient and install
cd ../Prescient
python setup.py develop --user
conda install -c conda-forge coincbc
#Switch to Egret and install
cd ../Egret/
pip install --user -e .

Note that the path to runner.py may need to be added to the PATH variable via a command
like: PATH="$PATH:$HOME/.local/bin"
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Figure 1: Code Interface Location.

20 Advanced Users: How to couple a new code
The procedure of coupling a new code/application with RAVEN is a straightforward process. For
all the codes currently supported by RAVEN (e.g. RELAP-7, RELAP5-3D, BISON, MOOSE,etc.),
the coupling is performed through a Python interface that interprets the information coming from
RAVEN and translates them into the input of the driven code. The coupling procedure does not
require modifying RAVEN itself. Instead, the developer creates a new Python interface that is go-
ing to be embedded in RAVEN at run-time (no need to introduce hard-coded coupling statements).
This interface needs to be placed in a folder (whatever name) located in (see figure 1):

path/to/raven/distribution/raven/framework/CodeInterfaces/

At the initialization stage, RAVEN imports all the Interfaces that are contained in this directory
and performs some preliminary cross-checks.
It is important to notice that the name of class in the Interface module is the one the user needs to
specify when the new interface needs to be used. For example, if the Interface module contains the
class “NewCode”, the subType in the <Code> block will be “NewCode”:

class NewCode(CodeInterfaceBase):
...

...
<Code name='whatever' subType='NewCode'>
...
</Code>
...

</Models>

In the following sub-sections, a step-by-step procedure for coupling a code to RAVEN is outlined.
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20.1 Pre-requisites.
In order to couple a newer application to the RAVEN code, some pre-requisites need to be satisfied.

Input

The first pre-requisite is the knowledge of the input syntax of the application the developer
wants to couple. Indeed, RAVEN task “ends” at the Code Interface stage. RAVEN transfers the
information needed to perturb the input space into the Code interface and expects that the newly
developed Interface is able to perturb the input files based on the information passed through.
This means that the developer needs to code a Python-compatible parser of the system code input
(a module that is able to read and modify the input of the code that needs to be coupled).
For example, let’s suppose the input syntax of the code the developer needs to couple is as follows:

kewword1 = aValue1
kewword2 = aValue2
kewword3 = aValue3
kewword4 = aValue4

The Python input parser would be:

class simpleInputParser():
def __init__(self,filename):

#
# @ In, string, filename, input file name (with path)
#
self.keywordDictionary = {}
# open the file
fileobject = open(filename)
# store all the lines into a list
lines = fileobject.readlines()
# parse the list to construct
# self.keywordDictionary dictionary
for line in lines:

# split the line with respect
# to the symbol "=" and store the
# outcomes into the dictionary
# listSplitted[0] is the keword
# listSplitted[1] is the value
listSplitted = line.split("=")
keyword = listSplitted[0]
value = listSplitted[1]
self.keywordDictionary[keyword] = value

# close the file
fileobject.close()
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def modifyInternalDictionary(self,inDictionary):
#
# @ In, dictionary {keyword:value},
# inDictionary, dictionary containing
# the keywords to perturb
#

# we just parse the dictionary and replace the
# matching keywords
for keyword,newvalue in inDictionary.items():

self.keywordDictionary[keyword] = newvalue

def writeNewInput(self,filename):
#
# @ In, string, filename, newer input file name (with path)
#

# open the file
fileobject = open(filename)
# write line by line
for keyword,newvalue in self.keywordDictionary.items():

fileobject.write(keyword + ``='' + str(newvalue) + ``\n'')
# close the file
fileobject.close()

It is important to notice that for most of the codes, a wild-card approach can be used. In case this ap-
proach fits the user’s needs, the RAVEN developer team suggests to inherit from theGenericCode
Interface (see section 19.1).
Output

RAVEN is able to handle Comma Separated Value (CSV) files (as outputs of the system
code). In order make RAVEN able to retrieve the information from the newly coupled code,
these files need to be either generated by the system code itself or the developer needs to code a
Python-compatible module to convert the whatever code output format to a CSV one. This module
can be directly called in the new code interface (see following section).
Let’s suppose that the output format of the code (the same of the previous input parser example) is
as follows:

result1 = aValue1
result2 = aValue2
result3 = aValue3

The Python output converter would be as simple as:
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def convertOutputFileToCSV(outputfile):
keywordDictionary = {}
# open the original file
fileobject = open(outputfile)
outputCSVfile = open (outputfile + '.csv')
# store all the lines into a list
lines = fileobject.readlines()
# parse the list to construct
# self.keywordDictionary dictionary
for line in lines:

# split the line with respect
# to the symbol "=" and store the
# outcomes into the dictionary
# listSplitted[0] is the keword
# listSplitted[1] is the value
listSplitted = line.split("=")
keyword = listSplitted[0]
value = listSplitted[1]
keywordDictionary[keyword] = value

outputCSVfile.write(','.join(keywordDictionary.keys()))
outputCSVfile.write(','.join(keywordDictionary.values()))
outputCSVfile.close()

And the output CSV becomes:

result1, result2, result3
aValue1, aValue2, aValue3

Note that in general RAVEN is content with accepting floats or strings as data types in the CSV.
However, if the CSV produced by running the code has a large number of columns (say, over
1000), it is necessary to include only floats and change the CSV loading utility. See more below
(20.2.8)

20.2 Code Interface Creation
As already mentioned, RAVEN imports all the “Code Interfaces” at run-time, without actually
knowing the syntax of the driven codes. In order to make RAVEN able to drive a newer software,
the developer needs to code a Python module that will contain few methods (with strict syntax)
that are called by RAVEN during the simulation.
When loading a “Code Interface”, RAVEN expects to find, in the class representing the code, the
following required methods:

from CodeInterfaceBaseClass import CodeInterfaceBase
class NewCode(CodeInterfaceBase):
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def generateCommand(self, inputFiles, executable, clargs=None,
↪→ fargs=None, preExec=None)

def createNewInput(self, currentInputFiles, oriInputFiles,
samplerType, **Kwargs)

In addition, the following optional methods can be specified:

from CodeInterfaceBaseClass import CodeInterfaceBase
class NewCode(CodeInterfaceBase):

...
def initialize(self, runInfoDict, oriInputFiles)
def finalizeCodeOutput(self, command, output, workingDir)
def getInputExtension(self)
def checkForOutputFailure(self, output, workingDir)

In the following sub-sections all the methods are fully explained, providing examples (referring to
the simple code used as example for the previous sections)

20.2.1 Method: generateCommand

def generateCommand(self, inputFiles, executable, clargs=None,
↪→ fargs=None, preExec=None)

The generateCommand method is used to generate the commands (in string format) needed to
launch the driven Code, as well as the root name of the output of the perturbed inputs (in string
format). The return for this command is a two-part Python tuple. The first entry is a list of two-
part tuples, each which specifies whether the corresponding command should be run exclusively
in serial, or whether it can be run in parallel, as well as the command itself. For example, for a
command where two successive commands are called, the first in serial and the second in parallel,

def generateCommand(self,inputFiles,executable,clargs=None,
↪→ fargs=None, preExec=None):
. . .
commands = [('serial',first_command), ('parallel',

↪→ second_command)]
return (commmands,outFileRoot)

For each command, the second entry in the tuple is a string containing the full command that the
internal JobHandler is going to use to run the Code this interface refers to. The return data type
must be a Python tuple with a list of tuples and a string: (commands, outfileRoot). Note
that in most cases, only a single command needs to be run, so only a single command tuple is
necessary. At run time, RAVEN will string together commands attached by double ampersands
(&&), and each command labeled as parallel-compatible will be prepended with appropriate mpi
arguments. For the example above, the command executed will be (with <NumMPI> equal to 4)

$ first_command && mpiexec -n 4 second_command
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RAVEN is going to call the generateCommand function passing in the following arguments:

• inputFiles, data type = list: List of input files (length of the list depends on the number
of inputs listed in the Step which is running this code);

• executable, data type = string, executable name with absolute path
(e.g. /home/path to executable/code.exe);

• clargs, optional, data type = dictionary, a dictionary containing the command-line flags
the user can specify in the input (e.g. under the node < Code >< clargstype =′

input′arg =′ −i′extension =′ .inp′/ >< /Code >).

• fargs, optional, data type = dictionary, a dictionary containing the axuiliary input file
variables the user can specify in the input (e.g. under the node < Code >< clargstype =′

input′arg =′ aux′extension =′ .aux′/ >< /Code >).

• preExec, optional, data type = string, a string the command that needs to be pre-executed
before the actual command. The user can specify in the input (e.g. under the node
< Code >< preexec > pre− executioncommand < /preexec >< /Code >)
Default: None

For the example referred to in the previous section, this method would be implemented as follows:

def generateCommand(self,inputFiles,executable,clargs=None,
↪→ fargs=None, preExec=None):
found = False
for index, inputFile in enumerate(inputFiles):

if inputFile.endswith(self.getInputExtension()):
found = True
break

if not found: raise IOError(
`None of the input files has one of the following

↪→ extensions: ` +
` `.join(self.getInputExtension()))

outputfile = 'out˜'+os.path.split(inputFiles[index])[1].split
↪→ ('.')[0]

executeCommand = [('parallel',executable+ ` -i ` +os.path.
↪→ split(inputFiles[index])[1])]

return executeCommand,outputfile

20.2.2 Method: createNewInput

def createNewInput(self,currentInputFiles,oriInputFiles,
↪→ samplerType,**Kwargs)
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The createNewInput method is used to generate an input based on the information RAVEN passes
in. In this function the developer needs to call the driven code input parser in order to modify the
input file, accordingly with respect to the variables RAVEN is providing. This method needs to
return a list containing the path and filenames of the modified input files. Note: RAVEN expects
that at least one input file of the original list gets modified.
RAVEN is going to call this function passing in the following arguments:

• currentInputFiles, data type = list: List of current input files. This list of files is the
one the code interface needs to use to print the new perturbed list of files. Indeed, RAVEN
already changes the file location in sub-directories and the Code Interface does not need
to change the filename or location of the files. For example, the files are going to have a
absolute path as following: .
path to working directory
stepName
anUniqueIdentifier
filename.extension. In case of sampling, the “anUniqueIdentifier” is going to be an integer
(e.g. 1).

• oriInputFiles , data type = list, List of the original input files;

• samplerType , data type = string, Sampler type (e.g. MonteCarlo, Adaptive, etc.).
Note: None if no Sampler has been used;

• Kwargs , data type = kwarded dictionary, dictionary of parameters. In this dictionary there
is another dictionary called ”SampledVars” where RAVEN stores the variables that got sam-
pled (Kwargs[’SampledVars’] = {’var1’:10,’var2’:40});

For the example referred in the previous section, this method would implemented as follows:

def createNewInput(self,currentInputFiles,
oriInputFiles,samplerType,**Kwargs):

for index, inputFile in enumerate(oriInputFiles):
if inputFile.endswith(self.getInputExtension()):
break

parser = simpleInputParser(currentInputFiles[index])
parser.modifyInternalDictionary(**Kwargs['SampledVars'])
parser.writeNewInput(newInputFiles[index])
return newInputFiles

20.2.3 Method: getInputExtension

def getInputExtension(self)
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The getInputExtension function is an optional method. If present, it is called by RAVEN code
at run time. This function can be considered an utility method, since its main goal is to return a
tuple of strings, where the developer can place all the input extensions the code interface needs
to support (i.e. the extensions of the input(s) the code interface is going to “perturb”). If this
method is not implemented, the default extensions are (”.i”, ”.inp”, ”.in”’). This function does
not accept any input argument. For the example referred in the previous section, this method
would implemented as follows:

def getInputExtension(self):
return (".i",".input")

20.2.4 Method: initialize

def initialize(self, runInfoDict, oriInputFiles)

The initialize function is an optional method. If present, it is called by RAVEN code at the begin
of each Step (once per step) involving the particular Code Interface. This method is generally
indicated to retrieve information from the RunInfo and/or the Input files.
RAVEN is going to call this function passing in the following arguments:

• runInfoDict, data type = dictionary: dictionary of the info stored in the run info XML
block;

• oriInputFiles, data type = list, list of the original input files.

20.2.5 Method: finalizeCodeOutput

def finalizeCodeOutput(self, command, output, workingDir)

The finalizeCodeOutput function is an optional method. If present, it is called by RAVEN code
at the end of each run. It can be used for those codes, that do not create CSV files as output
to convert the whatever output format into a CSV. RAVEN checks if a string is returned; if so,
RAVEN interprets that string as the new output file name (CSV).
RAVEN is going to call this function passing in the following arguments:

• command, data type = string: the command used to run the just ended job;

• output, data type = string, the Output name root;

• workingDir, data type = string, current working directory.

For the example referred in the previous section, this method would implemented as follows:

638



def finalizeCodeOutput(self, command, output, workingDir):
outfile = os.path.join(workingDir,output+".o")
convertOutputFileToCSV(outfile)

20.2.6 Method: checkForOutputFailure

def checkForOutputFailure(self, output, workingDir)

The checkForOutputFailure function is an optional method. If present, it is called by RAVEN
code at the end of each run. This method needs to be implemented by the codes that, if a run fails,
return a “returncode” = 0. This can happen in those codes that record the failure of a run (e.g. not
converged, etc.) as normal termination (returncode == 0) This method can be used, for example,
to parse the outputfile looking for a special keyword that testifies that a particular job failed (e.g.
in RELAP5 would be the keyword ”********”). This method MUST return a boolean (True if
failed, False otherwise).
RAVEN is going to call this function passing in the following arguments:

• output, data type = string,the Output name root;

• workingDir, data type = string, current working directory.

For the example referred in the previous section, this method would implemented as follows:

def checkForOutputFailure(self, command, output, workingDir):
from __builtin__ import any
errorWord = "ERROR"
return any(errorWord in x for x in

open(os.path.join(workingDir,output+'.o'),"r").readlines())

20.2.7 Method: setRunOnShell

self.setRunOnShell(shell=True)

The setRunOnShell function is an optional method. The default for shell is “True”. In RAVEN,
the subprocess module from Python is used to spawn new processes, connect to their input/out-
put/error pipes, and obtain their return codes. To support a wide variety of use cases, the Popen
constructor from subprocess is used to accept a large number of optional arguments. For most typ-
ical use cases, RAVEN will set these arguments automatically, and the code interface developers
should not worry about the values for these arguments. However, in some specific use cases, the
following argument may need to be setted by the code interface developers:
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• shell, the default value is True. If shell is True, the specified command generated by RAVEN
will be executed through the shell. This will allow RAVEN to have an enhanced control
flow with convenient access to other shell features such as shell pipes, filename wildcards,
environment variable expansion, and expansion of “ ” to a user’s home directory. If shell
is False, all the shell based features are disabled. In other words, the users could not use
the shell features in the code inteface to generate the commands that are needed to lauch the
driven code, i.e. the generateCommand method mentioned before should not use any shell
features when constructs the commands. For more detailed description, please refer to the
Python subprocess page https://docs.python.org/2/library/subprocess.
html Note: If external codes can not run through “Shell”, the code interface developers
should call this function with “shell=False” in the “ init ” method. For example:

def __init__(self):
self.setRunOnShell(shell=False)

20.2.8 Method: setCsvLoadUtil

self.setCsvLoadUtil('pandas')

The default CSV loader in RAVEN is pandas, which allows arbitrary data types in the CSV, gen-
erally strings and floats. However, arbitrary data can be challenging to load if there are a large
number of columns in the code’s output CSV that RAVEN attempts to read in. As a rule of thumb,
if there are over 1000 columns in a typical output CSV for your Code, the resulting values should
only be floats and integers (not strings), and this method should be called during the CodeInterface
construction or initialization to set the loading utility to numpy. While RAVEN’s numpy CSV
loading is notably faster than RAVEN’s pandas CSV loading, it does not allow the flexibility of
string entries except in the CSV header.

20.3 Tools for Developing Code Interfaces
To make generating a code interface as simple as possible, there are several tools RAVEN makes
available within the Code Interface objects.

20.3.1 File Objects

RAVEN has created a wrapper for files within Python in order to carry along some additional
information. This allows the user to tag particular files for reference in the Code Interface, using
the type XML attribute in <Files> nodes. To differentiate, RAVEN file objects will use the
capital Files, whereas typical files will use the lowercase files.
When the Files are passed in to createNewInput, they are passed in as Files objects. To
access the xmlAttrtype of a file, use the method getType. For instance, instead of looking for an
extension, a Code Interface might identify an input file by looking for a particular type, as shown
in the example below. Note: RAVEN does not access a File’s type; it is exclusively an optional
tool for Code Interface developers.
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found = False
for inFile in inputFiles:

if inFile.getType()=='mainInput':
found = True
break

if not found:
raise IOError('Desired file with type ``mainInput'' not found!'

↪→ )

Using Files type attributes can especially help when multiple input files have the same exten-
sion. For example, say a Code execution command normally has the following appearance on the
command line:

/home/path/to/executable/myexec.sh -i mainInp.xml -a auxInp.xml
↪→ --mesh cube.e

The <Files> block in the RAVEN XML might appear as follows:

<Files>
<Input name='main' type='base'>mainInp.xml</Input>
<Input name='two' type='aux' >auxInp.xml</Input>
<Input name='cube' type='mesh' perturbable='False'>cube.e</

↪→ Input>
</Files>

The search for these files in the Code Interface might then look like the example below, assuming
one file per type:

# populate a type dictionary
typesDict={}
for inFile in inputFiles:

typesDict[inFile.getType()]=inFile
# check all the necessary files are there
if 'base' not in typesDict.keys():

raise IOError('File type ``base'' not listed in input file!')
if 'aux' not in typesDict.keys():

raise IOError('File type ``aux'' not listed in input file!')
if 'mesh' not in typesDict.keys():

raise IOError('File type ``mesh'' not listed in input file!')
mainFile = typesDict['base']
# do operations on file, etc.

Additionally, a Code Interface developer can access the perturbable through the
getPerturbable() method of a Files object. This can be useful, for example, in prevent-
ing searching binary files for variable names when creating new input. For example,
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for inFile in inputFiles:
if not inFile.getPerturbable(): continue
# etc
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Figure 2: Plugins Location

21 Advanced Users: How to create a RAVEN ExternalModel
plugin

The procedure of adding a plugin for the ExternalModel is a straightforward process. The addition
of a plugin does not require modifying RAVEN itself. Instead, the developer creates a new Python
module that is going to be embedded in RAVEN at run-time (no need to introduce hard-coded
statements). This plugin needs to be placed in a folder (whatever name) located in (see figure 2):

path/to/raven/plugins/

In order to install a new plugin, the user can run the script contained in the RAVEN script folder:

python path/to/raven/scripts/install_plugins.py **directory**

where ∗ ∗ directory ∗ ∗ should be replaced with the absolute path to the plugin directory. (e.g.
“path/to/my/plugins/folder”). If the plugin developer wants to make of his plugin an official sup-
ported plugin in RAVEN (by the submodule system), he needs to check the raven wiki under the
“contribution” section).
At the initialization stage, RAVEN imports all the Plugins that are contained in this directory and
performs some preliminary cross-checks.
It is important to notice that the name of class in the Plugin module is the one the user needs to
specify when the new plugin needs to be used. For example, if the Plugin module contains the
class “NewPlugin”, the subType in the <ExternalModel> block will be “NewPlugin”:

class NewPlugin(ExternalModelPluginBase):
...

...
<ExternalModel name='whatever' subType='NewPlugin'>
...
</ExternalModel>
...

</Models>

In the following sub-sections, a step-by-step procedure for creating a new ExternalModel plugin is
outlined.
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21.1 ExternalModel Plugin Input
When a new ExternalModel plugin is developed, its RAVEN input is almost identical to the general
ExternalModel entity (see 15.4). The specifications of an ExternalModel Plugin must be defined
within the XML block <ExternalModel>. This XML node needs to contain the attributes:

• name, required string attribute, user-defined name of this External Model. Note: As with
the other objects, this is the name that can be used to refer to this specific entity from other
input blocks in the XML.

• subType, required string attribute, must be equal to the name of the new plugin the user
wants to use (e.g. NewPlugin). Note: In case a plugin is requested (through the subType
attribute) the attribute ModuleToLoad must not be inputted.

In order to make the RAVEN code aware of the variables the user is going to manipulate/use in
her/his ExternalModel Plugin, the variables need to be specified in the <ExternalModel> input
block. The user needs to input, within this block, only the variables that RAVEN needs to be aware
of (i.e. the variables are going to directly be used by the Plugin) and not the local variables that the
ExternalModel Plugin developer does not want to, for example, store in a RAVEN internal object.
These variables are specified within a <variables> block:

• <variables>, string, required parameter. Comma-separated list of variable names.
Each variable name needs to match a variable used/defined in the external python model.

In addition, if the user wants to use the alias system, the following XML block can be inputted:

• <alias> string, optional field specifies alias for any variable of interest in the input or out-
put space for the ExternalModel. These aliases can be used anywhere in the RAVEN input
to refer to the ExternalModel variables. In the body of this node the user specifies the name
of the variable that the model is going to use (during its execution). The actual alias, usable
throughout the RAVEN input, is instead defined in the variable attribute of this tag.
The user can specify aliases for both the input and the output space. As sanity check, RAVEN
requires an additional required attribute type. This attribute can be either “input” or “out-
put”. Note: The user can specify as many aliases as needed.
Default: None

When the Plugin variables are defined, at run time, RAVEN initializes them and tracks their values
during the simulation. Each variable defined in the <ExternalModel> block is available in
the Plugin class (in each implemented method ) as the object “container” that “acts” as a Python
“self”. For example,

def run (self, container, inputs):
print(container.variableA)

21.2 ExternalModel Plugin Creation
As already mentioned, RAVEN imports all the “ExternalModel Plugins” at run-time. In order to
make RAVEN able to drive a newer ExternalModel plugin, the developer needs to code a Python

644



class containing few methods (with strict syntax) that are called by RAVEN during the simulation.
Every new “ExternalModel Plugin” must inherit from a RAVEN base class named
ExternalModelP luginBase:

class NewPlugin(ExternalModelPluginBase):
...

This base class is needed by RAVEN to identify in the plugins folder which class must be consid-
ered an “ExternalModel Plugin”.
In addition, when loading an “ExternalModel Plugin”, RAVEN expects to find, in the class repre-
senting the plugin, the following required methods:

from ExternalModelPluginBase import ExternalModelPluginBase
class NewPlugin(ExternalModelPluginBase):

def run (self, container, Inputs)

In addition, the following optional methods can be specified:

from ExternalModelPluginBase import ExternalModelPluginBase
class NewPlugin(ExternalModelPluginBase):

...
def createNewInput(self, container, inputs, samplerType, **

↪→ Kwargs)
def _readMoreXML(self, container, xmlNode)
def initialize(self,container, runInfo, inputs)

In the following sub-sections all the methods are fully explained, providing examples.

21.2.1 Method: run

def run (self, container, Inputs)

As stated previously, the only method that must be present in an ExternalModel Plugin is the run
function. In this function, the plugin developer needs to implement the algorithm that RAVEN
will execute. The run method is generally called after having inquired the “createNewInput”
method (either the internal RAVEN one or the one implemented by the plugin developer). The
only two attributes this method is going to receive are a Python list of inputs (the inputs coming
from the createNewInput method) and a “self-like” object named “container”. If the user
wants RAVEN to collect the results of this method, the outcomes of interest need to be stored
in the above mentioned “container” object. Note: RAVEN is trying to collect the values of the
variables listed only in the <ExternalModel> XML block. In the following an example is
reported:

def run(self, container, Input):
# in here the actual run of the
# model is implemented
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input = Input[0]
container.outcome = container.sigma*container.rho*input[``

↪→ whatEver'']

21.2.2 Method: createNewInput

def createNewInput(self, container, inputs, samplerType, **Kwargs
↪→ )

The createNewInput method can be implemented by the ExternalModel Plugin developer to cre-
ate a new input with the information coming from the RAVEN framework. In this function, the
developer can retrieve the information coming from the RAVEN framework, during the employ-
ment of a calculation flow, and use them to construct a new input that is going to be transferred to
the “run” method. The new input created needs to be returned to RAVEN (i.e. “return NewInput”).
This method expects that the new input is returned in a Python “dictionary”. RAVEN communi-
cates, thorough a set of method attributes, all the information that are generally needed to create a
new input:

• inputs, python list, a list of all the inputs that have been defined in the “Step” using this
model.

• samplerType, string, the type of Sampler, if a sampling strategy is employed; will be
None otherwise.

• Kwargs, dictionary, a dictionary containing several pieces of information (that can change
based on the “Step” type). If a sampling strategy is employed, this dictionary contains an-
other dictionary identified by the keyword “SampledVars”, in which the variables perturbed
by the sampler are reported.

Note: If the “Step” that is using this Model has as input(s) an object of main class type “DataOb-
jects” (see Section 12), the internal “createNewInput” method is going to convert it in a dictionary
of values. Here we present an example:

def createNewInput(self, container, inputs,samplerType,**Kwargs):
# in here the actual createNewInput of the
# model is implemented
if samplerType == 'MonteCarlo':

avariable = inputs['something']*inputs['something2']
else:

avariable = inputs['something']/inputs['something2']
return avariable*Kwargs['SampledVars']['aSampledVar']
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21.2.3 Method: readMoreXML

def _readMoreXML(self, container, xmlNode)

As already mentioned, the readMoreXML method can be implemented by the ExternalModel
Plugin developer if the XML input that belongs to this ExternalModel plugin needs to be extended
to contain other information. The read information needs to be stored in the “self-like” object
“container” in order to be available to all the other methods (e.g. if the developer needs to add a
couple of newer XML nodes with information needed by the algorithm implemented in the “run”
method). If this method is implemented in the ExternalModel, RAVEN is going to call it when
the node <ExternalModel> is found parsing the XML input file. The method receives from
RAVEN an attribute of type “xml.etree.ElementTree”, containing all the sub-nodes and attribute
of the XML block <ExternalModel>.
Example XML:

<Simulation>
...
<Models>

...
<ExternalModel name='AnExtModule' subType=''NewPlugin">

<variables>sigma,rho,outcome</variables>
<!--

here we define other XML nodes RAVEN does not read
↪→ automatically.

We need to implement, in the external model Plugin
↪→ class the _readMoreXML

method
-->
<newNodeWeNeedToRead>
whatNeedsToBeRead

</newNodeWeNeedToRead>
</ExternalModel>
...

</Models>
...

</Simulation>

Corresponding Python function:

def _readMoreXML(self, container, xmlNode):
# the xmlNode is passed in by RAVEN framework
# <newNodeWeNeedToRead> is unknown (in the RAVEN framework)
# we have to read it on our own
# get the node
ourNode = xmlNode.find('newNodeWeNeedToRead')
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# get the information in the node
container.ourNewVariable = ourNode.text
# end function

21.2.4 Method: initialize

def initialize(self, container, runInfo, inputs)

The initialize method can be implemented in the ExternalModel Plugin in order to initialize some
variables needed by it. For example, it can be used to compute a quantity needed by the “run”
method before performing the actual calculation. If this method is implemented in the Exter-
nalModel Plugin, RAVEN is going to call it at the initialization stage of each “Step” (see section
18). RAVEN will communicate, thorough a set of method attributes, all the information that are
generally needed to perform an initialization:

• runInfo, a dictionary containing information regarding how the calculation is set up (e.g.
number of processors, etc.). It contains the following attributes:

– DefaultInputFile – default input file to use

– SimulationFiles – the xml input file

– ScriptDir – the location of the pbs script interfaces

– FrameworkDir – the directory where the framework is located

– WorkingDir – the directory where the framework should be running

– TempWorkingDir – the temporary directory where a simulation step is run

– NumMPI – the number of mpi process by run

– NumThreads – number of threads by run

– numProcByRun – total number of core used by one run (number of threads by number
of mpi)

– batchSize – number of contemporaneous runs

– ParallelCommand – the command that should be used to submit jobs in parallel
(mpi)

– numNode – number of nodes

– procByNode – number of processors by node

– totalNumCoresUsed – total number of cores used by driver

– queueingSoftware – queueing software name

– stepName – the name of the step currently running

– precommand – added to the front of the command that is run
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– postcommand – added after the command that is run

– delSucLogFiles – if a simulation (code run) has not failed, delete the relative log
file (if True)

– deleteOutExtension – if a simulation (code run) has not failed, delete the relative
output files with the listed extension (comma separated list, for example: ‘e,r,txt’)

– mode – running mode, curently the only mode supported is mpi (but custom modes
can be created)

– expectedTime – how long the complete input is expected to run

– logfileBuffer – logfile buffer size in bytes

• inputs, a list of all the inputs that have been specified in the “Step” using this model.

As all the others method in the ExternalModel Plugin, the information must be stored in the “self-
like” object “container”. In the following an example is reported:

def initialize(self, container, runInfo, inputs):
# Let's suppose we just need to initialize some variables
container.sigma = 10.0
container.rho = 28.0
# end function
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22 Advanced Users: How and When to create a RAVEN
Template

One of the great strengths of the RAVEN input is its flexibility; an enormous number of different
types of workflows can be constructed with the components outlined in this manual. Sometimes,
this flexibility is not required when standard or predefined workflows need to be employed
changing just few settings. For example, in classical uncertainty quantification, sometimes only a
few variables or the model needs to be changed, while the rest of the workflow stays the same.

As a tool to focus RAVEN on particular workflows, we introduce the RAVEN Templated Input
Files. The intention of this system is to allow a single user to develop a template RAVEN
input file along with a template interface, thereby simplifying inputs for any number of users
that only need to make minor changes to the templated workflow in order to perform their analysis.

Note: A RAVEN Template is a wrapper for creating RAVEN input files; it is not part of the
RAVEN core code and is usually s specific to a particular application.

22.1 When to use a RAVEN Template
By design, a RAVEN Template simplifies the user experience at the cost of flexibility. The amount
of streamlining is adjustable and specific to each template. At one extreme, a Template takes no
modifications at all and always produces the same workflow; at the other extreme the Template
duplicates entirely the RAVEN input syntax. Neither of those options is desirable; Templates
should find ground in-between.

There are some times where using a RAVEN Template can be highly beneficial:

• The workflow in question is highly complex, involving some advanced RAVEN usage to
perform unorthodox calculations,

• The workflow is mostly the same for each user, requiring only a small number of changes to
use repeatedly.

There are some times when using a RAVEN Template is unlikely to be useful:

• The workflow needs to be flexible enough to accommodate many unpredictable changes,

• The workflow has few entries and can be changed manually quite easily.

22.2 How to create a RAVEN Template
A RAVEN Template consists of three main pieces: a Templated Workflow, a Template Class, and a
Template Interface. The Interface is the main driver, and uses an input file to inform the Template
Class on how to modify the Templated Workflow in order to create a new RAVEN input file.
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Figure 3: Information Flow for RAVEN Templates

Refer to Figure 3. Each box represents a file in a RAVEN template system. The three boxes in
blue (Templated Workflow, Template Class, and Template Interface) are developed collectively as
the Template by a designer familiar with RAVEN input files and Python. The development of this
template only needs to occur once. The orange box (Input File) is in a format determined by the
Template Interface, and is the only portion of the Template that a user will interact with repeatedly
for any given workflow. The green box (New RAVEN Input) is the result of reading a particular
input file with the Template and is written by the Template. This new input can either be run
automatically with RAVEN or left to run at the user’s convenience, based on what the Template
Interface is designed to do. Note that running RAVEN from within a python script on Windows
within MinGW is particularly tricky.

The three portions of the Template are discussed individually in the following sections.

22.2.1 Templated Workflows

A Templated Workflow begins with a traditional RAVEN input file that is run to do a particular
analysis. It is highly recommended that this workflow is run with RAVEN and the inputs and
outputs are well understood before beginning templating. Keep a copy of the original workflow
before modifying the Templated Workflow.

Next, consider the parts of the workflow that are common to anyone who will want to perform a
similar analysis, and which are specific to individual runs. For example, perhaps the <Sequence>
and <Steps> are always the same, but the <Model> and sampled <variable> nodes may
change for each analysis. Note those parts of the original workflow that need to be flexible, and
remove them from the Templated Workflow. These will be filled in by the Template Class for this
workflow when the Template Interface is run.
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22.2.2 Template Class

The Template Class is a bridge between the template designer and the Templated Workflow. The
Template Class knows every detail about the Templated Workflow and knows how to modify it to
create a working RAVEN input. It does so through a set of standardized calls from the Template
Interface.
A Template Base Class is provided in the RAVEN repository to be inherited by your new Template
Class. It is located in

raven/framework/InputTemplates/TemplateBaseClass.py

We recommend you locate your new Template Class near your project where the workflows are
run, and not in the RAVEN repository.
There are several required methods in the API of the Template Base Class that are important.

loadTemplate(self, filename, path)

The loadTemplate method is how the Template Class knows how to load the Template Work-
flow. The default implementation in the Template Base Class is probably sufficient for most
Template Classes, where given the filename and path to the file, the template is loaded into
self. template. Of course, this behavior can be modified however suits a project by over-
loading this method in the Template Class.

createWorkflow(self, **kwargs)

The createWorkflow method is the main method of the Template Class. The Template
Interface calls this method when it wants to use a series of modifications to write a new RAVEN
input file. Note the Template Base Class implementation of createWorkflow accepts arbitrary
keyword arguments as **kwargs. This allows the inheriting Template Class to define its
own required arguments necessary to write a new input file. These may be lists, dictionaries,
or any other Python object. All of the necessary information for the Template Class to con-
vert a Template Workflow into a valid RAVEN input file should be passed through these arguments.

The rest of createWorkflow is open to do any operations necessary to modify the XML in
the Template Workflow until it becomes a valid RAVEN input that performs the desired analysis.
RAVEN offers a plethora of handy XML tools in raven/framework/xmlUtils, which is
imported in the base class and can be imported in your Template Class as well. In addition, the
Python standard library has an excellent xml.etree.ElementTree package for manipulating
XML. Note that any createWorkflow should start by deepcopying the template XML, to assure
a clean copy is available each time it is called. The createWorkflow ends by returning the
modified XML element.

writeWorkflow(self, template, destination, run=False)

Once createWorkflow is called, the resulting XML element can be supplied to the
writeWorkflow method, which writes the XML to a file. The Template Base Class imple-
mentation will likely cover the needs of most Template Classes, and shouldn’t require significant
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modification. Note that an optional argument run instructs the Template Class to attempt to run
the workflow in RAVEN once it is written to file. Note this currently works on Mac and Linux
systems, but is not yet consistent on Windows.

Other optional methods also exist in the Template Base Class and may be of use to individual
templates.

addNamingTemplates(cls, templates)

Note that the Template Base Class has a class-level dictionary member called
namingTemplates. The intention of this method is to store common ways to name
items in the RAVEN input in a format method so that later they are always consistent. To extend
this method, call BaseClass.addNamingTemplates at the class level in the inheriting
Template Class.

Finally, commonly-used shortcuts are included at the end of the Template Base Class to perform
actions that are repetitively used in modifying RAVEN inputs. We recommend you add your own
to your Template Class to help keep createWorkflow clean and easily maintainable.

22.2.3 Template Interface

The Template Interface is the code that actually gets called by users once the Template Class
and Template Workflow are complete. In its simplest form, the Template Interface is a Python
script that reads the data needed for the createWorkflow method and calls the methods on the
Template Class in order:

1. loadTemplate

2. createWorkflow

3. writeWorkflow

Template Interfaces read a simplified input file so that users can provide their parameters for the
Templated Workflow in an easy manner. Whatever enables the use of the RAVEN workflow with
minimal effort on the part of the users is ideal for the Template Interface.

22.3 Example
For testing and as an example of implementation, a simple Template was created to perform basic
uncertainty quantification (UQ) analysis on external models. The example can be found in

raven/tests/framework/TemplateInputs

The following files are part of this template under the directory given above:

• Templated Workflow: TemplateInputs/UQTemplate/uq template.xml
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• Template Class: TemplateInputs/UQTemplate/UQTemplate.py

• Template Interface: TemplateInputs/uq maker.py

• Input File: TemplateInputs/UQTemplate/uq template input.i

The original workflow from which the Templated Workflow was created involved a simple Monte
Carlo sampling of an external model and then postprocessing with BasicStatistics to find the mean,
standard deviation, skewness, and kurtosis of the results. The Template designer determined that
this workflow could be used for many similar analyses with only small changes, and decided to
template it. The designer determined that things that could be changed include the model sampled,
the outputs of the model, the inputs to the model (with their distributions), and the number of Monte
Carlo samples to take. The designer also decided that each case should have its own WorkingDir
to keep analyses separate. We will consider the resulting Template files that the designer wrote one
at a time in the following sections.

22.3.1 Example Templated Workflow

The file uq template.xml looks much like a typical RAVEN input file with some key pieces
missing. The <Sequence> shows that the two steps are ’sample’ and ’stats’, which
are for sampling a model using Monte Carlo sampling and then performing some statistics on
the results. Note however the missing contents in the <WorkingDir>, the empty nodes in the
<DataObjects>, the lack of any <Distributions>, and the missing variable lists in the
xmlNodePostProcessor. All the missing contents are filled in by the Template Class. For the
results of the filled-in workflow, see in

raven/tests/framework/TemplateInputs/gold/UQTemplate/new_uq.xml

22.3.2 Example Template Class

The file UQTemplate.py demonstrates inheritance of the Template Base Class and customiza-
tion for the logic to fill in the Templated Workflow.

Note that the Template Class adds three formatted strings to the class-level name templates, one
each for step names, distributions, and metric variables. These are called later in the code to assure
the naming conventions are always the same. These formatted strings employ Python’s inherent
string formatting tools.

The Template Base Class implementation of loadWorfklow does everything this Template
needs to load the Templated Workflow, so there is no need to modify it in the custom Tem-
plate Class. Similarly, the writeWorkflows does everything this Template needs to write
a newly-created input, so there is no need to modify it in the custom Template Class. Since
there was no need to overload the Template Base Class implementations of loadWorfklow
and writeWorkflows, the only main method changed in the Template Class is the essential
createWorkflow method. Note that we’ve added several keywords to the argument list:
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def createWorkflow(self, model=None, variables=None, samples=
↪→ None, case=None, **kwargs):

In order to correctly modify the Templated Workflow, the Template Class needs to know about
what model is being sampled, the input variables to the model and how they’re distributed, how
many Monte Carlo samples to take, and the name of the case being run. It requires all of these
to be provided by the Template Interface in order to write a new RAVEN input. In this case, the
method arguments model and variables are dictionaries, while the samples are an integer
and the case is a string.

Note that UQTemplate.createWorkflow calls the Template Base Class’s implementation
first in order to preserve inheritance. Since the deepcopy happens in the base class, we don’t
perform it again in the custom Template Class.

Throughout the remainder of the workflow creation, a series of XML manipulations are performed
based on the inputs provided from the Template Interface. For example, the module to load for the
Model is changed, the working directory is set, and the input and output variables are propagated
throughout the input file. Note also that several input construction shortcut methods have been
added for this particular template to simplify maintenance of the template.

22.3.3 Example Template Interface

The file uq maker.py contains the basic logic needed to read a user input file, load the Template
Class, and generate new inputs. It follows the sequence of events outlined above, first instructing
the Template Class to load the template, then reading in the user input, then instructing the
Template Class to create the workflow, then to write the workflow.

Beause the input needs for this Template are simple, we use Python’s standard library
configparser to read in the user input file, uq template input.i. This simple input
structure uses sections (model, variables, and settings) with keyword and value pairs in each
section. In order to change the RAVEN workflow created, the user only needs to make changes to
the existing input file and run the interface, then run RAVEN on the new input.

Note that we chose to provide the information to the Template Class mostly through dictionaries,
where the essential pieces of information can be provided. In particular note that the variables
provide only a mean and standard deviation; one reduction in flexibility is that we assume the
variables are normally distributed, disallowing other distributions.

The Template can be run with Python from the command line:

> python uq_maker.py
> cd UQTemplate
> ˜/projects/raven/raven_framework new_uq.xml
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It reads in the user input, modifies the template, writes the new input file, and finally runs RAVEN.
Note that, if desired, the interface can be extended to perform additional operations after RAVEN
has finished creating the workflow.
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A Appendix: Example Primer
In this Appendix, a set of examples are reported. In order to be as general as possible, the Model
type “ExternalModel” has been used.

A.1 Example 1.
This simple example is about the construction of a “Lorentz attractor”, sampling the relative input
space. The parameters that are sampled represent the initial coordinate (x0,y0,z0) of the attractor
origin.

<?xml version="1.0" encoding="UTF-8"?>
<Simulation verbosity="debug">
<!-- RUNINFO -->
<RunInfo>

<WorkingDir>externalModel</WorkingDir>
<Sequence>FirstMRun</Sequence>
<batchSize>3</batchSize>

</RunInfo>
<!-- Files -->
<Files>

<Input name='lorentzAttractor.py'
↪→ type=''>lorentzAttractor</Input>

</Files>
<!-- STEPS -->
<Steps>

<MultiRun name='FirstMRun' re-seeding='25061978'>
<Input class='Files' type=''

↪→ >lorentzAttractor.py</Input>
<Model class='Models' type='ExternalModel'

↪→ >PythonModule</Model>
<Sampler class='Samplers' type='MonteCarlo'

↪→ >MC_external</Sampler>
<Output class='DataObjects' type='HistorySet'

↪→ >testPrintHistorySet</Output>
<Output class='Databases' type='HDF5'

↪→ >test_external_db</Output>
<Output class='OutStreams' type='Print'

↪→ >testPrintHistorySet_dump</Output>
</MultiRun >

</Steps>
<!-- MODELS -->
<Models>
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<ExternalModel name='PythonModule' subType=''
↪→ ModuleToLoad='externalModel/lorentzAttractor'>
<variables>sigma,rho,beta,x,y,z,time,x0,y0,z0</variables>

</ExternalModel>
</Models>
<!-- DISTRIBUTIONS -->
<Distributions>

<Normal name='x0_distrib'>
<mean>4</mean>
<sigma>1</sigma>

</Normal>
<Normal name='y0_distrib'>

<mean>4</mean>
<sigma>1</sigma>

</Normal>
<Normal name='z0_distrib'>

<mean>4</mean>
<sigma>1</sigma>

</Normal>
</Distributions>
<!-- SAMPLERS -->
<Samplers>

<MonteCarlo name='MC_external'>
<samplerInit>
<limit>3</limit>

</samplerInit>
<variable name='x0' >
<distribution >x0_distrib</distribution>

</variable>
<variable name='y0' >
<distribution >y0_distrib</distribution>

</variable>
<variable name='z0' >
<distribution >z0_distrib</distribution>

</variable>
</MonteCarlo>

</Samplers>
<!-- DATABASES -->
<Databases>

<HDF5 name="test_external_db"/>
</Databases>
<!-- OUTSTREAMS -->
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<OutStreams>
<Print name='testPrintHistorySet_dump'>

<type>csv</type>
<source>testPrintHistorySet</source>

</Print>
</OutStreams>
<!-- DATA OBJECTS -->
<DataObjects>

<HistorySet name='testPrintHistorySet'>
<Input>x0,y0,z0</Input>
<Output>time,x,y,z</Output>

</HistorySet>
</DataObjects>
</Simulation>

The Python ExternalModel is reported below:

import numpy as np

def run(self,Input):
max_time = 0.03
t_step = 0.01

numberTimeSteps = int(max_time/t_step)

self.x = np.zeros(numberTimeSteps)
self.y = np.zeros(numberTimeSteps)
self.z = np.zeros(numberTimeSteps)
self.time = np.zeros(numberTimeSteps)

self.x0 = Input['x0']
self.y0 = Input['y0']
self.z0 = Input['z0']

self.x[0] = Input['x0']
self.y[0] = Input['y0']
self.z[0] = Input['z0']
self.time[0]= 0

for t in range (numberTimeSteps-1):
self.time[t+1] = self.time[t] + t_step
self.x[t+1] = self.x[t] + self.sigma*

(self.y[t]-self.x[t]) * t_step
self.y[t+1] = self.y[t] + (self.x[t]*
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(self.rho-self.z[t])-self.y[t]) * t_step
self.z[t+1] = self.z[t] + (self.x[t]*

self.y[t]-self.beta*self.z[t]) * t_step

A.2 Example 2.
This example shows a slightly more complicated example, that employs the usage of:

• Samplers: Grid and Adaptive;

• Models: External, Reduce Order Models and Post-Processors;

• OutStreams: Prints and Plots;

• Data Objects: PointSets;

• Functions: ExternalFunctions.

The goal of this input is to compute the “SafestPoint”. It provides the coordinates of the farthest
point from the limit surface that is given as an input. The safest point coordinates are expected val-
ues of the coordinates of the farthest points from the limit surface in the space of the “controllable”
variables based on the probability distributions of the “non-controllable” variables.
The term “controllable” identifies those variables that are under control during the system oper-
ation, while the “non-controllable” variables are stochastic parameters affecting the system be-
haviour randomly.
The “SafestPoint” post-processor requires the set of points belonging to the limit surface, which
must be given as an input.

<Simulation verbosity='debug'>

<!-- RUNINFO -->
<RunInfo>

<WorkingDir>SafestPointPP</WorkingDir>
<Sequence>pth1,pth2,pth3,pth4</Sequence>
<batchSize>50</batchSize>

</RunInfo>

<!-- STEPS -->
<Steps>

<MultiRun name = 'pth1' pauseAtEnd = 'False'>
<Sampler class = 'Samplers' type = 'Grid'

↪→ >grd_vl_ql_smp_dpt</Sampler>
<Input class = 'DataObjects' type = 'PointSet'

↪→ >grd_vl_ql_smp_dpt_dt</Input>
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<Model class = 'Models' type = 'ExternalModel'
↪→ >xtr_mdl</Model>

<Output class = 'DataObjects' type = 'PointSet'
↪→ >nt_phy_dpt_dt</Output>

</MultiRun >

<MultiRun name = 'pth2' pauseAtEnd = 'True'>
<Sampler class = 'Samplers' type = 'Adaptive'

↪→ >dpt_smp</Sampler>
<Input class = 'DataObjects' type =

↪→ 'PointSet' >bln_smp_dt</Input>
<Model class = 'Models' type = 'ExternalModel'

↪→ >xtr_mdl</Model>
<Output class = 'DataObjects' type =

↪→ 'PointSet' >nt_phy_dpt_dt</Output>
<SolutionExport class = 'DataObjects' type =

↪→ 'PointSet' >lmt_srf_dt</SolutionExport>
</MultiRun>

<PostProcess name='pth3' pauseAtEnd = 'False'>
<Input class = 'DataObjects' type = 'PointSet'

↪→ >lmt_srf_dt</Input>
<Model class = 'Models' type = 'PostProcessor'

↪→ >SP</Model>
<Output class = 'DataObjects' type = 'PointSet'

↪→ >sfs_pnt_dt</Output>
</PostProcess>

<OutStreamStep name = 'pth4' pauseAtEnd = 'True'>
<Input class = 'DataObjects' type =

↪→ 'PointSet' >lmt_srf_dt</Input>
<Output class = 'OutStreams' type = 'Print'

↪→ >lmt_srf_dmp</Output>
<Input class = 'DataObjects' type = 'PointSet'

↪→ >sfs_pnt_dt</Input>
<Output class = 'OutStreams' type = 'Print'

↪→ >sfs_pnt_dmp</Output>
</OutStreamStep>

</Steps>

<!-- DATA OBJECTS -->
<DataObjects>
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<PointSet name = 'grd_vl_ql_smp_dpt_dt'>
<Input>x1,x2,gammay</Input>
<Output>OutputPlaceHolder</Output>

</PointSet>

<PointSet name = 'nt_phy_dpt_dt'>
<Input>x1,x2,gammay</Input>
<Output>g</Output>

</PointSet>

<PointSet name = 'bln_smp_dt'>
<Input>x1,x2,gammay</Input>
<Output>OutputPlaceHolder</Output>

</PointSet>

<PointSet name = 'lmt_srf_dt'>
<Input>x1,x2,gammay</Input>
<Output>g_zr</Output>

</PointSet>

<PointSet name = 'sfs_pnt_dt'>
<Input>x1,x2,gammay</Input>
<Output>p</Output>

</PointSet>
</DataObjects>

<!-- DISTRIBUTIONS -->
<Distributions>

<Normal name = 'x1_dst'>
<upperBound>10</upperBound>
<lowerBound>-10</lowerBound>

<mean>0.5</mean>
<sigma>0.1</sigma>

</Normal>

<Normal name = 'x2_dst'>
<upperBound>10</upperBound>
<lowerBound>-10</lowerBound>
<mean>-0.15</mean>
<sigma>0.05</sigma>

</Normal>
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<Normal name = 'gammay_dst'>
<upperBound>20</upperBound>
<lowerBound>-20</lowerBound>
<mean>0</mean>
<sigma>15</sigma>

</Normal>
</Distributions>

<!-- SAMPLERS -->
<Samplers>

<Grid name = 'grd_vl_ql_smp_dpt'>
<variable name = 'x1' >

<distribution>x1_dst</distribution>
<grid type = 'value' construction = 'equal' steps = '10'

↪→ upperBound = '10'>2</grid>
</variable>
<variable name='x2' >

<distribution>x2_dst</distribution>
<grid type = 'value' construction = 'equal' steps = '10'

↪→ upperBound = '10'>2</grid>
</variable>
<variable name='gammay' >

<distribution>gammay_dst</distribution>
<grid type = 'value' construction = 'equal' steps = '10'

↪→ lowerBound = '-20'>4</grid>
</variable>

</Grid>

<Adaptive name = 'dpt_smp' verbosity='debug'>
<ROM class = 'Models' type = 'ROM'

↪→ >accelerated_ROM</ROM>
<Function class = 'Functions' type = 'External'

↪→ >g_zr</Function>
<TargetEvaluation class = 'DataObjects' type =

↪→ 'PointSet' >nt_phy_dpt_dt</TargetEvaluation>
<Convergence limit = '3000' forceIteration = 'False' weight

↪→ = 'none' persistence = '5'>1e-2</Convergence>
<variable name = 'x1'>
<distribution>x1_dst</distribution>

</variable>
<variable name = 'x2'>
<distribution>x2_dst</distribution>
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</variable>
<variable name = 'gammay'>
<distribution>gammay_dst</distribution>

</variable>
</Adaptive>

</Samplers>

<!-- MODELS -->
<Models>

<ExternalModel name = 'xtr_mdl' subType = '' ModuleToLoad =
↪→ 'SafestPointPP/safest_point_test_xtr_mdl'>
<variables>x1,x2,gammay,g</variables>

</ExternalModel>

<ROM name = 'accelerated_ROM' subType = 'SciKitLearn'>
<Features>x1,x2,gammay</Features>
<Target>g_zr</Target>
<SKLtype>svm|SVC</SKLtype>
<kernel>rbf</kernel>
<gamma>10</gamma>
<tol>1e-5</tol>
<C>50</C>

</ROM>

<PostProcessor name='SP' subType='SafestPoint'>
<!-- List of Objects (external with respect to this PP)

↪→ needed by this post-processor -->
<Distribution class = 'Distributions' type =

↪→ 'Normal'>x1_dst</Distribution>
<Distribution class = 'Distributions' type =

↪→ 'Normal'>x2_dst</Distribution>
<Distribution class = 'Distributions' type =

↪→ 'Normal'>gammay_dst</Distribution>
<!- end of the list -->
<controllable>

<variable name = 'x1'>
<distribution>x1_dst</distribution>
<grid type = 'value' steps = '20'>1</grid>

</variable>
<variable name = 'x2'>

<distribution>x2_dst</distribution>
<grid type = 'value' steps = '20'>1</grid>
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</variable>
</controllable>
<non-controllable>

<variable name = 'gammay'>
<distribution>gammay_dst</distribution>
<grid type = 'value' steps = '20'>2</grid>

</variable>
</non-controllable>

</PostProcessor>
</Models>

<!-- FUNCTIONS -->
<Functions>

<External name='g_zr'
↪→ file='SafestPointPP/safest_point_test_g_zr.py'>
<variable>g</variable>

</External>
</Functions>

<!-- OUT-STREAMS -->
<OutStreams>

<Print name = 'lmt_srf_dmp'>
<type>csv</type>
<source>lmt_srf_dt</source>

</Print>

<Print name = 'sfs_pnt_dmp'>
<type>csv</type>
<source>sfs_pnt_dt</source>

</Print>
</OutStreams>

</Simulation>

The Python ExternalModel is reported below:

def run(self,Input):
self.g = self.x1+4*self.x2-self.gammay

The “Goal Function”,the function that defines the transitions with respect the input space coordi-
nates, is as follows:

def __residuumSign(self):
if self.g<0 : return 1
else : return -1
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